1
|
Wang Z, Jiang L, Bai X, Guo M, Zhou R, Zhou Q, Yang H, Qian J. Vitamin D receptor regulates methyltransferase like 14 to mitigate colitis-associated colorectal cancer. J Genet Genomics 2025:S1673-8527(25)00002-5. [PMID: 39778713 DOI: 10.1016/j.jgg.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Colitis-associated colorectal cancer (CAC), a serious complication of ulcerative colitis (UC), is associated with a poor prognosis. The vitamin D receptor (VDR) is recognized for its protective role in UC and CAC through the maintenance of intestinal barrier integrity and the regulation of inflammation. This study demonstrates a significant reduction in m6A-related genes, particularly methyltransferase like 14 (METTL14), in UC and CAC patients and identifies an association between METTL14 and VDR. In the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced mouse model, vitamin D treatment increases METTL14 expression and reduces tumor burden, while Vdr-knockout mice exhibit lower METTL14 levels and increased tumorigenesis. In vitro, the VDR agonist calcipotriol upregulates METTL14 in NCM460 cells, with this effect attenuated by VDR knockdown. VDR knockdown in DLD-1 colon cancer cells decreases METTL14 expression and promotes proliferation, which is reversed by METTL14 overexpression. Mechanistic studies reveal that VDR regulates METTL14 expression via promoter binding, modulating key target genes such as SOX4, DROSH, and PHLPP2. This study highlights the role of the VDR-METTL14 axis as a protective mechanism in CAC and suggests its potential as a therapeutic target for preventing and treating CAC.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Lingjuan Jiang
- Biomarker Discovery and Validation Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Mingyue Guo
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Runing Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qingyang Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
2
|
Zhang X, Zhu R, Jiao Y, Simayi H, He J, Shen Z, Wang H, He J, Zhang S, Yang F. Expression profiles and gene set enrichment analysis of the transcriptomes from the cancer tissue, white adipose tissue and paracancer tissue with colorectal cancer. PeerJ 2024; 12:e17105. [PMID: 38563016 PMCID: PMC10984182 DOI: 10.7717/peerj.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide and is related to diet and obesity. Currently, crosstalk between lipid metabolism and CRC has been reported; however, the specific mechanism is not yet understood. In this study, we screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. According to the results of the biological analysis, we speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Methods We screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. Results We speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Conclusions In this study, the findings raise the possibility of crosstalk between lipid metabolism and CRC through the exosomal delivery of lncRNAs.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Affiliated XiaoShan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Halizere Simayi
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialing He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Houdong Wang
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suzhan Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Long Y, Mao C, Liu S, Tao Y, Xiao D. Epigenetic modifications in obesity-associated diseases. MedComm (Beijing) 2024; 5:e496. [PMID: 38405061 PMCID: PMC10893559 DOI: 10.1002/mco2.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
The global prevalence of obesity has reached epidemic levels, significantly elevating the susceptibility to various cardiometabolic conditions and certain types of cancer. In addition to causing metabolic abnormalities such as insulin resistance (IR), elevated blood glucose and lipids, and ectopic fat deposition, obesity can also damage pancreatic islet cells, endothelial cells, and cardiomyocytes through chronic inflammation, and even promote the development of a microenvironment conducive to cancer initiation. Improper dietary habits and lack of physical exercise are important behavioral factors that increase the risk of obesity, which can affect gene expression through epigenetic modifications. Epigenetic alterations can occur in early stage of obesity, some of which are reversible, while others persist over time and lead to obesity-related complications. Therefore, the dynamic adjustability of epigenetic modifications can be leveraged to reverse the development of obesity-associated diseases through behavioral interventions, drugs, and bariatric surgery. This review provides a comprehensive summary of the impact of epigenetic regulation on the initiation and development of obesity-associated cancers, type 2 diabetes, and cardiovascular diseases, establishing a theoretical basis for prevention, diagnosis, and treatment of these conditions.
Collapse
Affiliation(s)
- Yiqian Long
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
| | - Shuang Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaChina
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, School of Basic MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med 2022; 193:253-273. [PMID: 36270517 DOI: 10.1016/j.freeradbiomed.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D is considered an essential micronutrient for human health that is metabolized into a multifunctional secosteroid hormone. We can synthesize it in the skin through ultraviolet B (UVB) rays or acquire it from the diet. Its deficiency is a major global health problem that affects all ages and ethnic groups. Furthermore, dysregulation of vitamin D homeostasis has been associated with premature aging, driven by various cellular processes, including oxidative stress and cellular senescence. Various studies have shown that vitamin D can attenuate oxidative stress and delay cellular senescence, mainly by inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Klotho and improving mitochondrial homeostasis, proposing this vitamin as an excellent candidate for delaying aging. However, the mechanisms around these processes are not yet fully explored. Therefore, in this review, the effects of vitamin D on redox regulation and cellular senescence are discussed to propose new lines of research and clinical applications of vitamin D in the context of age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico; Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
6
|
Tayel SI, Soliman SE, Ahmedy IA, Abdelhafez M, Elkholy AM, Hegazy A, Muharram NM. Deregulation of CircANXA2, Circ0075001, and CircFBXW7 Gene Expressions and Their Predictive Value in Egyptian Acute Myeloid Leukemia Patients. Appl Clin Genet 2022; 15:69-85. [PMID: 35874179 PMCID: PMC9300747 DOI: 10.2147/tacg.s365613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Aim of the Work Methods Results Conclusion
Collapse
Affiliation(s)
- Safaa I Tayel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
- Correspondence: Safaa I Tayel, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt, Email
| | - Shimaa E Soliman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Iman A Ahmedy
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Mohamed Abdelhafez
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Aly M Elkholy
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Amira Hegazy
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Nashwa M Muharram
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| |
Collapse
|
7
|
Izquierdo AG, Boughanem H, Diaz-Lagares A, Arranz-Salas I, Esteller M, Tinahones FJ, Casanueva FF, Macias-Gonzalez M, Crujeiras AB. DNA methylome in visceral adipose tissue can discriminate patients with and without colorectal cancer. Epigenetics 2021; 17:665-676. [PMID: 34311674 DOI: 10.1080/15592294.2021.1950991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adipose tissue dysfunction, particularly the visceral (VAT) compartment, has been proposed to play a relevant role in colorectal cancer (CRC) development and progression. Epigenetic mechanisms could be involved in this association. The current study aimed to evaluate if specific epigenetic marks in VAT are associated with colorectal cancer (CRC) to identify epigenetic hallmarks of adipose tissue-related CRC. Epigenome-wide DNA methylation was evaluated in VAT from 25 healthy participants and 29 CRC patients, using the Infinium HumanMethylation450K BeadChip. The epigenome-wide methylation analysis identified 170,184 sites able to perfectly separate the CRC and healthy samples. The differentially methylated CpG sites (DMCpGs) showed a global trend for increased methylated levels in CRC with respect to healthy group. Most of the genes encoded by the DMCpGs belonged to metabolic pathways and cell cycle, insulin resistance, and adipocytokine signalling, as well as tumoural transformation processes. In gene-specific analyses, involved genes biologically relevant for the development of CRC include PTPRN2, MAD1L1, TNXB, DIP2C, INPP5A, HDCA4, PRDM16, RPTOR, ATP11A, TBCD, PABPC3, and IER2. The methylation level of some of them showed a discriminatory capacity for detecting CRC higher than 90%, showing IER2 to have the highest capacity. This study reveals that a specific methylation pattern of VAT is associated with CRC. Some of the epigenetic marks identified could provide useful tools for the prediction and personalized treatment of CRC connected to excess adiposity.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| | - Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenetics, Translational Medical Oncology (Oncomet), Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Oncología (CIBERONC), Spain
| | - Isabel Arranz-Salas
- Unit of Anatomical Pathology, Virgen de la Victoria University Hospital, Málaga, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro De Investigacion Biomedica En Red Oncologia (CIBERONC), Madrid, Spain; Institucio Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Felipe F Casanueva
- Molecular and Cellular Endocrinology Group. Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS), Santiago De Compostela University (USC) and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| |
Collapse
|
8
|
Boughanem H, Izquierdo AG, Hernández-Alonso P, Arranz-Salas I, Casanueva FF, Tinahones FJ, Crujeiras AB, Macias-Gonzalez M. An Epigenetic Signature is Associated with Serum 25-Hydroxyvitamin D in Colorectal Cancer Tumors. Mol Nutr Food Res 2021; 65:e2100125. [PMID: 34289228 DOI: 10.1002/mnfr.202100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Vitamin D has been widely associated with colorectal cancer (CRC) through different insights. This study aims to explore the association between serum 25-hydroxyvitamin D (25(OH)D) and the global DNA methylation in tumor from CRC patients. METHODS AND RESULTS A genome-wide DNA methylation analysis is conducted in 20 CRC patients under categorical (10 patients have 25(OH)D <30 ng mL-1 ; 10 patients with 25(OH)D ≥30 ng mL-1 ) and continuous models of 25(OH)D. A total of 95 differentially methylated CpGs (DMCpGs) are detected under the categorical model (false discovery rate (FDR) < 0.05), while 16 DMCpGs are found under the continuous model. Regional analysis showed eight vitamin D-associated differentially methylated regions (DMR). Between them, a DMR is the most significant at cAMP-Dependent Protein Kinase Inhibitor Alpha (PKIA) locus. Furthermore, seven genes, including PKIA gene, have more or equal than two significant DMCpGs. The protein networking analysis found pathways implicated in cell adhesion and extracellular matrix, as well as signaling transduction. CONCLUSIONS This study identifies novel epigenetic loci associated with serum 25(OH)D status. Interestingly, also, a positive association between vitamin D and DNA methylation in the CRC context is found, suggesting a role in CRC. Further studies are warranted to clarify and replicate these results.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Pablo Hernández-Alonso
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Reus, Spain.,Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Isabel Arranz-Salas
- UGC de Anatomía Patológica, Hospital Universitario Virgen de la Victoria, Málaga, 29010, Spain
| | - Felipe F Casanueva
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
9
|
Behavioral Risk Factors and Risk of Early-Onset Colorectal Cancer: Review of the Mechanistic and Observational Evidence. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00465-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Bilani N, Elson L, Szuchan C, Elimimian E, Saleh M, Nahleh Z. Newly-identified Pathways Relating Vitamin D to Carcinogenesis: A Review. In Vivo 2021; 35:1345-1354. [PMID: 33910812 DOI: 10.21873/invivo.12387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The epidemiological relationship between vitamin D levels and cancer has been thoroughly investigated. Published data from large studies appear to corroborate a significant relationship between higher serum vitamin D concentrations and improved survival. Mechanistic reviews on commonly-studied cancers - including breast cancer, colon cancer and melanoma - focus predominantly on data from older studies. In outlining avenues for future research, we believe there is utility in summarizing novel findings introduced to the literature. MATERIALS AND METHODS In this narrative review, we used MEDLINE, PUBMED and Cochrane databases to identify mechanistic studies published from January 1, 2015 onwards exploring this topic. RESULTS Twenty-five mechanistic studies were included in this review. It was found that vitamin D plays a critical role in both direct (i.e. tumor gene expression, proliferation, invasiveness, sensitivity to chemotherapy etc.) and indirect (i.e. effects on the tumor microenvironment and immunomodulation) tumor suppression mechanisms. CONCLUSION These newly-identified pathways warrant further research, with the hopes that we may understand how and when vitamin D supplementation can be integrated into precision medicine therapeutics for cancers of the breast, colon and skin. Cancer care providers should consider recommendations to screen for vitamin D deficiency in this population.
Collapse
Affiliation(s)
- Nadeem Bilani
- Department of Hematology-Oncology, Cleveland Clinic Florida, Weston, FL, U.S.A.;
| | - Leah Elson
- Department of Hematology-Oncology, Cleveland Clinic Florida, Weston, FL, U.S.A
| | - Charles Szuchan
- Department of Hematology-Oncology, Cleveland Clinic Florida, Weston, FL, U.S.A
| | - Elizabeth Elimimian
- Department of Hematology-Oncology, Cleveland Clinic Florida, Weston, FL, U.S.A
| | | | - Zeina Nahleh
- Department of Hematology-Oncology, Cleveland Clinic Florida, Weston, FL, U.S.A
| |
Collapse
|
11
|
Lorenzo PM, Crujeiras AB. Potential effects of nutrition-based weight loss therapies in reversing obesity-related breast cancer epigenetic marks. Food Funct 2021; 12:1402-1414. [PMID: 33480953 DOI: 10.1039/d0fo01984d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is a modifiable risk factor of breast cancer and epigenetic marks were proposed as a relevant mechanistic link. These mechanisms can be remodelled by modifying lifestyle factors and this fact could be useful in the treatment of obesity-related breast cancer. This review aimed to reveal the current evidence on the effects of differences in body composition and lifestyle factors on the risk, treatment, and survival of breast cancer with a focus on the effects of weight loss therapies based on different nutrients, bioactive compounds, and Mediterranean and ketogenic diets to counteract obesity-related breast cancer epigenetic marks. This review was framed on the most relevant and recently published articles and abstracts selected in PubMed using key words related to epigenetics, lifestyle, dietary habits, nutrients, bioactive compounds, ketone bodies, and weight loss treatments in obesity and breast cancer. Several studies have demonstrated that lifestyle interventions, including dietary modifications towards a healthy diet pattern, are effective therapies to prevent the onset of breast cancer and to improve the survival after treatment. These therapies reduce the main factors associated with obesity that are links between adiposity and cancer, including oxidative stress, inflammation and epigenetic mechanisms. However, although sufficient evidence exists regarding the effects of nutrients, dietary patterns, and weight loss therapies to prevent breast cancer or to improve survival, the effects of these strategies on the oncological treatment response were less studied. This review summarises the current scientific evidence regarding these nutritional strategies as adjuvant therapies in the management of obesity-related breast cancer by remodelling epigenetic marks related to carcinogenesis.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
| | | |
Collapse
|
12
|
|
13
|
Ong LTC, Booth DR, Parnell GP. Vitamin D and its Effects on DNA Methylation in Development, Aging, and Disease. Mol Nutr Food Res 2020; 64:e2000437. [PMID: 33079481 DOI: 10.1002/mnfr.202000437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Indexed: 12/18/2022]
Abstract
DNA methylation is increasingly being recognized as a mechanism through which environmental exposures confer disease risk. Several studies have examined the association between vitamin D and changes in DNA methylation in areas as diverse as human and animal development, genomic stability, chronic disease risk, and malignancy. In many cases, they have demonstrated clear associations between vitamin D and DNA methylation in candidate disease pathways. Despite this, a clear understanding of the mechanisms by which these factors interact is unclear. This paper reviews the current understanding of the effects of vitamin D on DNA methylation. In light of current knowledge in the field, the potential mechanisms mediating vitamin D effects on DNA methylation are discussed, as are the limiting factors and future avenues for research into this exciting area.
Collapse
Affiliation(s)
- Lawrence T C Ong
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales, 2145, Australia
- Department of Immunology, Westmead Hospital, Cnr Darcy and Hawkesbury Rds, Westmead, New South Wales, 2145, Australia
| | - David R Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales, 2145, Australia
| | - Grant P Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales, 2145, Australia
| |
Collapse
|
14
|
Barrea L, Frias-Toral E, Pugliese G, Garcia-Velasquez E, DE Los Angeles Carignano M, Savastano S, Colao A, Muscogiuri G. Vitamin D in obesity and obesity-related diseases: an overview. Minerva Endocrinol (Torino) 2020; 46:177-192. [PMID: 33213116 DOI: 10.23736/s2724-6507.20.03299-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypovitaminosis D and obesity represent two pandemic conditions sometimes associated with each other. Although it is known that there is a close relationship between these two health problems, the underlying pathophysiological mechanism has not yet been fully clarified. In fact, on the one hand, obesity per se seems to involve low circulating levels of vitamin D due to low sun exposure, physical activity, and intake of foods rich in vitamin D, volumetric dilution and sequestration in the adipose tissue. Conversely, since preadipocytes and adipocytes express the receptors and are involved in the metabolism of vitamin D it would seem that low levels of this vitamin may be involved in adipogenesis and therefore in the development of obesity. This connection is extremely important when considering obesity-related diseases. In fact, low vitamin D levels and severe obesity are significantly associated with some cardio-metabolic risk factors, including high Body Mass Index, waist circumference, blood pressure, impaired lipid and glycemic profile and insulin resistance, as they would seem associated with worse cardiovascular outcomes and higher cancer incidence and mortality. Therefore, the purpose of this review was to examine the recent evidence linking low vitamin D status, obesity and obesity-related diseases, highlighting the scientific achievements and the gaps to be filled with further investigations.
Collapse
Affiliation(s)
- Luigi Barrea
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Collaborating Centers for Obesity Management (COM) of The European Association for the Study of Obesity (EASO), Federico II University Medical School of Naples, Naples, Italy - .,Unit of Endocrinology, Department of Clinical Medicine and Surgery, Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy -
| | - Evelyn Frias-Toral
- SOLCA Hospital, Guayaquil, Ecuador.,Santiago de Guayaquil Catholic University, Guayaquil, Ecuador
| | - Gabriella Pugliese
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Collaborating Centers for Obesity Management (COM) of The European Association for the Study of Obesity (EASO), Federico II University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Department of Clinical Medicine and Surgery, Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy
| | | | | | - Silvia Savastano
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Collaborating Centers for Obesity Management (COM) of The European Association for the Study of Obesity (EASO), Federico II University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Department of Clinical Medicine and Surgery, Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Collaborating Centers for Obesity Management (COM) of The European Association for the Study of Obesity (EASO), Federico II University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Department of Clinical Medicine and Surgery, Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy.,Federico II University, Naples, Italy
| | - Giovanna Muscogiuri
- Unit of Endocrinology, Department of Clinical Medicine and Surgery, Collaborating Centers for Obesity Management (COM) of The European Association for the Study of Obesity (EASO), Federico II University Medical School of Naples, Naples, Italy.,Unit of Endocrinology, Department of Clinical Medicine and Surgery, Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University Medical School of Naples, Naples, Italy
| |
Collapse
|
15
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Ferri E, Casati M, Cesari M, Vitale G, Arosio B. Vitamin D in physiological and pathological aging: Lesson from centenarians. Rev Endocr Metab Disord 2019; 20:273-282. [PMID: 31654261 DOI: 10.1007/s11154-019-09522-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vitamin D is a secosteroid hormone that exerts a pleiotropic action on a wide spectrum of tissues, apparatuses and systems. Thus, vitamin D has assumed an increasingly dominant role as a key determinant of biological mechanisms and specific clinical conditions. Older people frequently present vitamin D deficiency, a status potentially influencing several mechanisms responsible for different age-related diseases. Centenarians symbolize the ideal model for investigating the peculiar traits of longevity, as they have reached an age close to the estimated limit of the human lifespan. Interestingly, despite the profound heterogeneity of centenarians in terms of health status, all these people share the same condition of severe vitamin D deficiency, suggesting that they may have implemented a number of adaptive strategies to cope with the age-related physiological derangement of vitamin D metabolism. The lesson deriving from centenarians' experience suggests that: i) severe vitamin D deficiency does not preclude the possibility of reaching extreme longevity, ii) strategies to prevent hypovitaminosis D may be useful to slow down the processes of "fragilization" occurring in aged people, iii) beneficial effects of vitamin D supplementation need to be confirmed regarding longevity.
Collapse
Affiliation(s)
- Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Casati
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Via Pace 9, 20122, Milan, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Via Pace 9, 20122, Milan, Italy
- Istituto Auxologico Italiano, IRCCS, Laboratorio Sperimentale di Ricerche di Neuroendocrinologia Geriatrica ed Oncologica, Milan, Cusano Milanino, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Via Pace 9, 20122, Milan, Italy.
| |
Collapse
|
17
|
DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions. Biomolecules 2019; 9:biom9070289. [PMID: 31323834 PMCID: PMC6680848 DOI: 10.3390/biom9070289] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
The modulation of the activity of DNA methyltransferases (DNMTs) represents a crucial epigenetic mechanism affecting gene expressions or DNA repair mechanisms in the cells. Aberrant modifications in the function of DNMTs are a fundamental event and part of the pathogenesis of human cancer. Phytochemicals, which are biosynthesized in plants in the form of secondary metabolites, represent an important source of biomolecules with pleiotropic effects and thus provide a wide range of possible clinical applications. It is well documented that phytochemicals demonstrate significant anticancer properties, and in this regard, rapid development within preclinical research is encouraging. Phytochemicals affect several epigenetic molecular mechanisms, including DNA methylation patterns such as the hypermethylation of tumor-suppressor genes and the global hypomethylation of oncogenes, that are specific cellular signs of cancer development and progression. This review will focus on the latest achievements in using plant-derived compounds and plant-based diets targeting epigenetic regulators and modulators of gene transcription in preclinical and clinical research in order to generate novel anticancer drugs as sensitizers for conventional therapy or compounds suitable for the chemoprevention clinical setting in at-risk individuals. In conclusion, indisputable anticancer activities of dietary phytochemicals linked with proper regulation of DNA methylation status have been described. However, precisely designed and well-controlled clinical studies are needed to confirm their beneficial epigenetic effects after long-term consumption in humans.
Collapse
|
18
|
Cabrera-Mulero A, Crujeiras AB, Izquierdo AG, Torres E, Ayers D, Casanueva FF, Tinahones FJ, Morcillo S, Macias-Gonzalez M. Novel SFRP2 DNA Methylation Profile Following Neoadjuvant Therapy in Colorectal Cancer Patients with Different Grades of BMI. J Clin Med 2019; 8:jcm8071041. [PMID: 31319558 PMCID: PMC6678889 DOI: 10.3390/jcm8071041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The relationship between body weight and different cancers is now well-recognized and among such cancers, colorectal cancer (CRC) is reported most frequently. Our group recently published findings, through an epigenome-wide association study, suggesting that body mass index (BMI) could act as a relevant risk factor in the CRC. In addition, aberrant SFRP2 methylation is one of the major mechanisms for Wnt signaling activation in CRC. Conversely, neoadjuvant chemo-radiotherapy appears to alter the rectal cancer epigenome. This study was aimed to evaluate the effect of obesity, measured by BMI, on the methylation of SFRP2 in tumor samples of patients with CRC. Non-treated CRC patients and CRC patients treated with pre-operative neoadjuvant therapy from 2011 to 2013 were included and classified by BMI < 25.0 kg/m2 and BMI > 25.0 kg/m2. SFRP2 DNA methylation in tumor samples was measured by pyrosequencing. Our findings suggest a possible interaction between SFRP2 methylation levels and BMI in CRC tumor samples. The correlation of SFRP2 hypomethylation with an elevated BMI was stronger within the non-treated CRC patient group than within the treated CRC patient group. We have successfully demonstrated that the beneficial association of tumor SFRP2 hypomethylation is dependent on patient BMI in non-treated CRC, suggesting a possible tumor suppressor role for SFRP2 in overweight and obese patients. Additional studies of clinical pathologies would be necessary to strengthen these preliminary results.
Collapse
Affiliation(s)
- Amanda Cabrera-Mulero
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain
| | - Ana B Crujeiras
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Andrea G Izquierdo
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Esperanza Torres
- Unidad de Gestión Clínica de Oncología Intercentros Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, 2080 Msida MSD, Malta
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK
| | - Felipe F Casanueva
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain
| | - Sonsoles Morcillo
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain.
- Laboratorio Investigación Biomédica 1ª Planta, Hospital Universitario Virgen de la Victoria, Campus de Teatinos s/n 29010, 29010 Málaga, Spain.
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010 Málaga, Spain
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition CB06/03/0018), "Instituto de Salud Carlos III", 28029 Madrid, Spain
| |
Collapse
|
19
|
Epigenetic Influences in the Obesity/Colorectal Cancer Axis: A Novel Theragnostic Avenue. JOURNAL OF ONCOLOGY 2019; 2019:7406078. [PMID: 31007685 PMCID: PMC6441533 DOI: 10.1155/2019/7406078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/21/2019] [Indexed: 12/25/2022]
Abstract
The World Health Organization (WHO) considers that obesity has reached proportions of pandemic. Experts also insist on the importance of considering obesity as a chronic disease and one of the main contributors to the worldwide burden of other nontransmissible chronic diseases, which have a great impact on health, lifestyle, and economic cost. One of the most current challenges of biomedical science faces is to understand the origin of the chronic nontransmissible diseases, such as obesity and cancer. There is a large evidence, both in epidemiological studies in humans and in animal models, of the association between obesity and an increased risk of cancer incidence. In the last years, the initial discovery of epigenetic mechanisms represents the most relevant finding to explain how the genome interacts with environmental factors and the ripple effects on disease pathogeneses. Since then, all epigenetic process has been investigated by the scientific communities for nearly two decades to determine which components are involved in this process. DNA/RNA methylation and miRNA are classified as two of the most important representative classes of such epigenetic mechanisms and dysregulated activity of such mechanism can certainly contribute to disease pathogenesis and/or progression especially in tumors. This review article serves to highlight the impact of DNA/RNA methylation and miRNA-based epigenetic mechanism activities in the interplay between obesity and the development and clinical significance of colorectal cancer.
Collapse
|