1
|
Fang J, Zou M, Yang M, Cui Y, Pu R, Yang Y. TAF15 inhibits p53 nucleus translocation and promotes HCC cell 5-FU resistance via post-transcriptional regulation of UBE2N. J Physiol Biochem 2024; 80:919-933. [PMID: 39446246 DOI: 10.1007/s13105-024-01053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Chemotherapy resistance is an important factor responsible for the low 5-year survival rate of hepatocellular carcinoma (HCC) patients. Ubiquitin-conjugating enzyme E2N (UBE2N) is a cancer-associated ubiquitin-conjugating enzyme that is expressed in HCC tissues, and its high expression is associated with a poor prognosis. This study explored the role played by UBE2N in development of 5-fluorouracil (5-FU) resistance in HCC cells. Three HCC cell lines (HepG2 [p53 wild type], Huh7 [p53 point mutant type], Hep3B [p53 non-expression type]), and one normal liver cell line (MIHA) were used in our present study. The IC50 value of 5-FU was determined using a cell counting kit-8 (CCK-8) assay. Cell viability was assessed by colony formation assays. TUNEL assays and flow cytometry were used to analyze cell apoptosis. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to confirm the binding relationship between UBE2N mRNA and TAF15 protein. Our results showed that TAF15 and UBE2N were highly expressed in HCC cells. UBE2N inhibited the translocation of p53 protein into the cell nucleus to increase 5-FU resistance, as reflected by an increased IC50 value, an increase in cell viability, and a reduction in cell apoptosis. Overexpression of p53 reduced 5-FU resistance, but that effect could be reversed by UBE2N overexpression. TAF15 protein bound to and stabilized UBE2N mRNA, thereby inhibiting p53 translocation into the nucleus and promoting 5-FU resistance in HCC cells. Collectively, our present study identified a novel mechanism by which TAF15/UBE2N regulates p53 distribution to increase 5-FU resistance. Our results also suggest potential therapeutic strategies for treating HCC.
Collapse
Affiliation(s)
- Jiayan Fang
- Department of Internal Medicine-Oncology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Mengqi Zou
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Xianglong Road of Shilong Town, Dongguan, 523326, China
| | - Mei Yang
- Department of Internal Medicine-Oncology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Yejia Cui
- Department of Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Rong Pu
- Department of Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Yufeng Yang
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Xianglong Road of Shilong Town, Dongguan, 523326, China.
| |
Collapse
|
2
|
Yang B, Chen W, Tao T, Zhang J, Kong D, Hao J, Yu C, Liao G, Gong H. UBE2N promotes cell viability and glycolysis by promoting Axin1 ubiquitination in prostate cancer cells. Biol Direct 2024; 19:35. [PMID: 38715121 PMCID: PMC11075218 DOI: 10.1186/s13062-024-00469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Ubiquitin-conjugating enzyme E2 N (UBE2N) is recognized in the progression of some cancers; however, little research has been conducted to describe its role in prostate cancer. The purpose of this paper is to explore the function and mechanism of UBE2N in prostate cancer cells. METHODS UBE2N expression was detected in Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data, prostate cancer tissue microarrays, and prostate cancer cell lines, respectively. UBE2N knockdown or overexpression was used to analyze its role in cell viability and glycolysis of prostate cancer cells and tumor growth. XAV939 or Axin1 overexpression was co-treated with UBE2N overexpression to detect the involvement of the Wnt/β-catenin signaling and Axin1 in the UBE2N function. UBE2N interacting with Axin1 was analyzed by co-immunoprecipitation assay. RESULTS UBE2N was upregulated in prostate cancer and the UBE2N-high expression correlated with the poor prognosis of prostate cancer. UBE2N knockdown inhibited cell viability and glycolysis in prostate cancer cells and restricted tumor formation in tumor-bearing mice. Wnt/β-catenin inhibition and Axin1 overexpression reversed the promoting viability and glycolysis function of UBE2N. UBE2N promoted Axin1 ubiquitination and decreased Axin1 protein level.
Collapse
Affiliation(s)
- Bo Yang
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Tianyi Tao
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jun Zhang
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dehui Kong
- Experimental Cellular Therapy Group, University of California, San Francisco, San Francisco, 94103, USA
| | - Jidong Hao
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China
| | - Chao Yu
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guoqiang Liao
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China.
| | - Hua Gong
- Department of Urology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No.1500 Zhouyuan Road, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|
3
|
Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Valbonetti L, Bernabò N, Barboni B. An interactive analysis of the mouse oviductal miRNA profiles. Front Cell Dev Biol 2022; 10:1015360. [PMID: 36340025 PMCID: PMC9627480 DOI: 10.3389/fcell.2022.1015360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction.
Collapse
Affiliation(s)
- Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale Dell’Abruzzo e Del Molise “G. Caporale”, Teramo, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
- *Correspondence: Nicola Bernabò,
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Akber U, Bong S, Park ZY, Park CS. Effects of cereblon on stress-activated redox proteins and core behavior. Brain Res 2022; 1793:148054. [PMID: 35973609 DOI: 10.1016/j.brainres.2022.148054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
The mechanisms underlying the vulnerability and resilience of an individual to stress are only partly understood. Response to stress is determined by behavioral and biochemical changes in the brain. Chronic ultra-mild stress (CUMS) induces an anhedonic-like state in mice that resembles symptoms of human depression. This study reports the role of cereblon (CRBN) in regulating the metabolic and antioxidant status of neuronal tissues in the mouse model of CUMS. Intriguingly, Crbn-/- (KO) mice showed resilient responsiveness, both at the behavioral and proteomic levels. Several core behaviors were also differentially altered by CUMS in KO mice. Liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based proteome analysis of whole brain lysate (WBL) showed an enriched chaperonic, metabolic, and antioxidant status in the brains of KO subjects, including several members of DNAJ chaperones, creatine kinase, quinone oxidoreductase, superoxide dismutase (SOD1), glutathione S-transferase Mu (GSTM), peroxiredoxin-6 (PRDX6), and thioredoxin. Pathological phosphorylation as characterized by aggregation of tau and α-synuclein (α-syn) was significantly reduced in the neuronal tissues of KO mouse model of CUMS as compared to wild type (WT) mice. Furthermore, significantly increased SOD1 activity and reduced lipid peroxidation were observed in Crbn-KO systems. Integrated signaling pathways were also identified in CRBN-specific sub-networks constructed from protein-protein interaction analysis by STRING. The present study highlights the roles of CRBN in regulating the stress response (SR) and reshaping metabolic status in the brains of mice exposed to CUMS. A better understanding of the molecular mechanisms of depression and neurodegeneration can improve the development of novel treatments.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, School of Life Sciences and Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
5
|
Sikora KN, Castellanos-García LJ, Hardie JM, Liu Y, Farkas ME, Rotello VM, Vachet RW. Nanodelivery vehicles induce remote biochemical changes in vivo. NANOSCALE 2021; 13:12623-12633. [PMID: 34264256 PMCID: PMC8380036 DOI: 10.1039/d1nr02563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanomaterial-based platforms are promising vehicles for the controlled delivery of therapeutics. For these systems to be both efficacious and safe, it is essential to understand where the carriers accumulate and to reveal the site-specific biochemical effects they produce in vivo. Here, a dual-mode mass spectrometry imaging (MSI) method is used to evaluate the distributions and biochemical effects of anti-TNF-α nanoparticle stabilized capsules (NPSCs) in mice. It is found that most of the anticipated biochemical changes occur in sub-organ regions that are separate from where the nanomaterials accumulate. In particular, TNF-α-specific lipid biomarker levels change in immune cell-rich regions of organs, while the NPSCs accumulate in spatially isolated filtration regions. Biochemical changes that are associated with the nanomaterials themselves are also observed, demonstrating the power of matrix-assisted laser desorption/ionization (MALDI) MSI to reveal markers indicating possible off-target effects of the delivery agent. This comprehensive assessment using MSI provides spatial context of nanomaterial distributions and efficacy that cannot be easily achieved with other imaging methods, demonstrating the power of MSI to evaluate both expected and unexpected outcomes associated with complex therapeutic delivery systems.
Collapse
Affiliation(s)
- Kristen N Sikora
- Department of Chemistry, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory, Amherst, MA 01003, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Song TT, Xu F, Wang W. Inhibiting ubiquitin conjugating enzyme E2 N by microRNA-590-3p reduced cell growth of cervical carcinoma. Kaohsiung J Med Sci 2020; 36:501-507. [PMID: 32196955 DOI: 10.1002/kjm2.12204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022] Open
Abstract
The ubiquitin conjugating enzyme E2 N (UBE2N) has been reported to be involved in the tumorigenesis of several tumors, but its function in cervical carcinoma has not been investigated yet. In the present study, UBE2N was found elevated in cervical carcinoma, and patients with high UBE2N had a shorter overall survival than patients with low expression. Additionally, knockdown of UBE2N decreased the activation of MEK1/2 and p38 in cervical carcinoma cells, and UBE2N knockdown also markedly inhibited cervical carcinoma cell growth. Our further studies found that microRNA-590-3p (miR-590-3p) was significantly decreased in cervical carcinoma, and patients with high miR-590-3p had a longer overall survival than patients with low expression. Moreover, miR-590-3p expression was found negatively correlated with UBE2N expression in cervical carcinoma, and our further studies showed that miR-590-3p targeted UBE2N and inhibited its expression in cervical carcinoma. Overexpression of miR-590-3p could inhibit cervical carcinoma cell growth, but enhanced UBE2N could rescue miR-590-3p-induced cell growth inhibition in cervical carcinoma. This study indicated that targeting miR-590-3p/UBE2N axis could be a potential strategy for the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Ting-Ting Song
- Department of Obstetrics, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| | - Fei Xu
- Department of Obstetrics, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| | - Wei Wang
- Department of Obstetrics, Weifang Maternal and Child Health Hospital, Weifang, Shandong, China
| |
Collapse
|
7
|
Sikora KN, Hardie JM, Castellanos-García LJ, Liu Y, Reinhardt BM, Farkas ME, Rotello VM, Vachet RW. Dual Mass Spectrometric Tissue Imaging of Nanocarrier Distributions and Their Biochemical Effects. Anal Chem 2019; 92:2011-2018. [PMID: 31825199 DOI: 10.1021/acs.analchem.9b04398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanomaterial-based drug delivery vehicles are able to deliver therapeutics in a controlled, targeted manner. Currently, however, there are limited analytical methods that can detect both nanomaterial distributions and their biochemical effects concurrently. In this study, we demonstrate that matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) can be used together to obtain nanomaterial distributions and biochemical consequences. These studies employ nanoparticle-stabilized capsules (NPSCs) loaded with siRNA as a testbed. MALDI-MSI experiments on spleen tissues from intravenously injected mice indicate that NPSCs loaded with anti-TNF-α siRNA cause changes to the lipid composition in white pulp regions of the spleen, as anticipated, based on pathways known to be affected by TNF-α, whereas NPSCs loaded with scrambled siRNA do not cause the predicted changes. Interestingly, LA-ICP-MSI experiments reveal that the NPSCs primarily localize in the red pulp, suggesting that the observed changes in lipid composition are due to diffusive rather than localized effects on TNF-α production. Such information is only accessible by combining data from the two modalities, which we accomplish by using the heme signals from MALDI-MSI and iron signals from LA-ICP-MSI to overlay the images. Several unexpected changes in lipid composition also occur in regions where the NPSCs are found, suggesting that the NPSCs themselves can influence tissue biochemistry as well.
Collapse
Affiliation(s)
- Kristen N Sikora
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Joseph M Hardie
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | | - Yuanchang Liu
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Biidaaban M Reinhardt
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Michelle E Farkas
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Richard W Vachet
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|