1
|
Ottenbourgs T, Van Nieuwenhuysen E. Novel Endocrine Therapeutic Opportunities for Estrogen Receptor-Positive Ovarian Cancer-What Can We Learn from Breast Cancer? Cancers (Basel) 2024; 16:1862. [PMID: 38791941 PMCID: PMC11119209 DOI: 10.3390/cancers16101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare ovarian malignancy primarily affecting younger women and is characterized by an indolent growth pattern. It exhibits indolent growth and high estrogen/progesterone receptor expression, suggesting potential responsiveness to endocrine therapy. However, treatment efficacy remains limited due to the development of endocrine resistance. The mechanisms of resistance, whether primary or acquired, are still largely unknown and present a significant hurdle in achieving favorable treatment outcomes with endocrine therapy in these patients. In estrogen receptor-positive breast cancer, mechanisms of endocrine resistance have been largely explored and novel treatment strategies to overcome resistance have emerged. Considering the shared estrogen receptor positivity in LGSOC and breast cancer, we wanted to explore whether there are any parallel mechanisms of resistance and whether we can extend endocrine breast cancer treatments to LGSOC. This review aims to highlight the underlying molecular mechanisms possibly driving endocrine resistance in ovarian cancer, while also exploring the available therapeutic opportunities to overcome this resistance. By unraveling the potential pathways involved and examining emerging strategies, this review explores valuable insights for advancing treatment options and improving patient outcomes in LGSOC, which has limited therapeutic options available.
Collapse
Affiliation(s)
- Tine Ottenbourgs
- Gynaecological Oncology Laboratory, KU Leuven, Leuven Cancer Institute, 3000 Leuven, Belgium;
| | - Els Van Nieuwenhuysen
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, BGOG and Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Beumers L, Vlachavas EI, Borgoni S, Schwarzmüller L, Penso-Dolfin L, Michels BE, Sofyali E, Burmester S, Heiss D, Wilhelm H, Yarden Y, Helm D, Will R, Goncalves A, Wiemann S. Clonal heterogeneity in ER+ breast cancer reveals the proteasome and PKC as potential therapeutic targets. NPJ Breast Cancer 2023; 9:97. [PMID: 38042915 PMCID: PMC10693625 DOI: 10.1038/s41523-023-00604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Intratumoral heterogeneity impacts the success or failure of anti-cancer therapies. Here, we investigated the evolution and mechanistic heterogeneity in clonal populations of cell models for estrogen receptor positive breast cancer. To this end, we established barcoded models of luminal breast cancer and rendered them resistant to commonly applied first line endocrine therapies. By isolating single clones from the resistant cell pools and characterizing replicates of individual clones we observed inter- (between cell lines) and intra-tumor (between different clones from the same cell line) heterogeneity. Molecular characterization at RNA and phospho-proteomic levels revealed private clonal activation of the unfolded protein response and respective sensitivity to inhibition of the proteasome, and potentially shared sensitivities for repression of protein kinase C. Our in vitro findings are consistent with tumor-heterogeneity that is observed in breast cancer patients thus highlighting the need to uncover heterogeneity at an individual patient level and to adjust therapies accordingly.
Collapse
Affiliation(s)
- Lukas Beumers
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| | - Efstathios-Iason Vlachavas
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Simone Borgoni
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Luisa Schwarzmüller
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Luca Penso-Dolfin
- Division of Somatic Evolution and Early Detection, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Birgitta E Michels
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Emre Sofyali
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sara Burmester
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Daniela Heiss
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Heike Wilhelm
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Angela Goncalves
- Division of Somatic Evolution and Early Detection, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Li CL, Moi SH, Lin HS, Hou MF, Chen FM, Shih SL, Kan JY, Kao CN, Wu YC, Kao LC, Chen YH, Lee YC, Chiang CP. Comprehensive Transcriptomic and Proteomic Analyses Identify a Candidate Gene Set in Cross-Resistance for Endocrine Therapy in Breast Cancer. Int J Mol Sci 2022; 23:ijms231810539. [PMID: 36142451 PMCID: PMC9501051 DOI: 10.3390/ijms231810539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits, approximately 30% of patients develop ET resistance, which remains a major clinical challenge in patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the ER and related pathways; however, other targets still exist from ligand-independent ER reactivation. Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort with treatment response for the initial ET regimen and an endocrine therapy cohort with survival outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from complete response groups (CR) and were significantly correlated with survival outcomes in both cohorts. In summary, this study provides valuable clinical implications for the critical roles played by candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs and AIs of ET resistance for the future.
Collapse
Affiliation(s)
- Chung-Liang Li
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huei-Shan Lin
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Shen-Liang Shih
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Ni Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Li-Chun Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Hsuan Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: or ; Tel.: +886-7-312-1101 (ext. 2260)
| |
Collapse
|
4
|
Epigenetic Factors as Etiological Agents, Diagnostic Markers, and Therapeutic Targets for Luminal Breast Cancer. Biomedicines 2022; 10:biomedicines10040748. [PMID: 35453496 PMCID: PMC9031900 DOI: 10.3390/biomedicines10040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Luminal breast cancer, an etiologically heterogeneous disease, is characterized by high steroid hormone receptor activity and aberrant gene expression profiles. Endocrine therapy and chemotherapy are promising therapeutic approaches to mitigate breast cancer proliferation and recurrence. However, the treatment of therapy-resistant breast cancer is a major challenge. Recent studies on breast cancer etiology have revealed the critical roles of epigenetic factors in luminal breast cancer tumorigenesis and drug resistance. Tumorigenic epigenetic factor-induced aberrant chromatin dynamics dysregulate the onset of gene expression and consequently promote tumorigenesis and metastasis. Epigenetic dysregulation, a type of somatic mutation, is a high-risk factor for breast cancer progression and therapy resistance. Therefore, epigenetic modulators alone or in combination with other therapies are potential therapeutic agents for breast cancer. Several clinical trials have analyzed the therapeutic efficacy of potential epi-drugs for breast cancer and reported beneficial clinical outcomes, including inhibition of tumor cell adhesion and invasiveness and mitigation of endocrine therapy resistance. This review focuses on recent findings on the mechanisms of epigenetic factors in the progression of luminal breast cancer. Additionally, recent findings on the potential of epigenetic factors as diagnostic biomarkers and therapeutic targets for breast cancer are discussed.
Collapse
|
5
|
Vini R, Rajavelu A, Sreeharshan S. 27-Hydroxycholesterol, The Estrogen Receptor Modulator, Alters DNA Methylation in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:783823. [PMID: 35360070 PMCID: PMC8961300 DOI: 10.3389/fendo.2022.783823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
27-hydroxycholesterol (27-HC) is the first known endogenous selective estrogen receptor modulator (SERM), and its elevation from normal levels is closely associated with breast cancer. A plethora of evidence suggests that aberrant epigenetic signatures in breast cancer cells can result in differential responses to various chemotherapeutics and often leads to the development of resistant cancer cells. Such aberrant epigenetic changes are mostly dictated by the microenvironment. The local concentration of oxygen and metabolites in the microenvironment of breast cancer are known to influence the development of breast cancer. Hence, we hypothesized that 27-HC, an oxysterol, which has been shown to induce breast cancer progression via estrogen receptor alpha (ERα) and liver X receptor (LXR) and by modulating immune cells, may also induce epigenetic changes. For deciphering the same, we treated the estrogen receptor-positive cells with 27-HC and identified DNA hypermethylation on a subset of genes by performing DNA bisulfite sequencing. The genes that showed significant DNA hypermethylation were phosphatidylserine synthase 2 (PTDSS2), MIR613, indoleamine 2,3-dioxygenase 1 (IDO1), thyroid hormone receptor alpha (THRA), dystrotelin (DTYN), and mesoderm induction early response 1, family member 3 (MIER). Furthermore, we found that 27-HC weakens the DNMT3B association with the ERα in MCF-7 cells. This study reports that 27-HC induces aberrant DNA methylation changes on the promoters of a subset of genes through modulation of ERα and DNMT3B complexes to induce the local DNA methylation changes, which may dictate drug responses and breast cancer development.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Chennai, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| | - Sreeja Sreeharshan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- *Correspondence: Arumugam Rajavelu, ; Sreeja Sreeharshan,
| |
Collapse
|