1
|
Oliaee RT, Farrokhi MR, Moeeni H, Tavakoly R, Jafarinia M, Iravanpour F. MicroRNA dysregulation and target genes in common spinal tumors. Cancer Genet 2025; 292-293:124-130. [PMID: 40024072 DOI: 10.1016/j.cancergen.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Spinal tumors, although rare, pose significant challenges in diagnosis and treatment due to their complex biological behavior and the variety of tumor types involved. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as critical regulators of gene expression and play dual roles as oncogenes or tumor suppressors, depending on their target genes. This review comprehensively examines the role of miRNAs in the pathogenesis and progression of common spinal tumors, including ependymoma, astrocytoma, meningioma, and metastasis, based on existing studies using both human and in vitro models. Several miRNAs have been identified as dysregulated in these tumor types, influencing key cellular processes such as proliferation, migration, and apoptosis. The potential of miRNAs as diagnostic, prognostic, and therapeutic biomarkers is explored, highlighting their value in guiding personalized treatment approaches. Although promising, these findings require further validation to fully understand miRNA-mediated mechanisms and translate these insights into clinical applications. MiRNA-targeted therapies offer a promising avenue for improving patient outcomes in spinal tumor management.
Collapse
Affiliation(s)
- Razieh Tavakoli Oliaee
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Moeeni
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahele Tavakoly
- Institute of General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany; Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farideh Iravanpour
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Molecular Medicine Research Center, Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Gao L, Huang J, Xia J, Zhao P, Dong S, Jiang W, Zhou Q, Xu Z, Luo H, Zhou W, Sun J, Wang G, Geng Q, Wang J, Zou C. SNHG17 Reprograms Energy Metabolism of Breast Cancer by Activating Mitochondrial DNA Transcription. Cancer Res 2025; 85:1097-1112. [PMID: 39841089 DOI: 10.1158/0008-5472.can-24-1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025]
Abstract
In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable the development of metabolism-targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long noncoding RNA small nuclear RNA host gene 17 (SNHG17) and unfavorable prognosis in breast cancer. SNHG17 promoted breast cancer cell proliferation by augmenting mitochondrial ATP production. Mechanistically, SNHG17 directly interacted with the P65 subunit of NF-κB and phosphorylated P65 at the threonine 505 site. SNHG17 bound to P65 at its truncated loop2 site, recruited P65 to mitochondria, and coregulated the transcriptional activation of mitochondrial DNA to promote ATP production. Accordingly, targeting SNHG17 with an antisense oligonucleotide significantly reduced breast cancer tumor growth both in vitro and in vivo. Overall, these results established a role for SNHG17 in promoting breast cancer progression by increasing ATP production and provided insights into the reprogramming of energy metabolism in solid tumors. Significance: SNHG17 cooperates with NF-κB to induce expression of mitochondrial DNA and boost ATP production in breast cancer, suggesting that targeting SNHG17 could reverse metabolic reprogramming to suppress tumor progression.
Collapse
Affiliation(s)
- Lin Gao
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jingyi Huang
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jinquan Xia
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Pan Zhao
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, the Second Clinical Medical College, Jinan University, Shenzhen, P.R. China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, P.R. China
| | - Wei Jiang
- Department of Breast Surgery, Harbin Medical University, Harbin, P.R. China
| | - Qianqian Zhou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Zhenglei Xu
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Hui Luo
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Wenbin Zhou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jichao Sun
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Qingshan Geng
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Jigang Wang
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
| | - Chang Zou
- Department of Central Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, P.R. China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, the Second Clinical Medical College, Jinan University, Shenzhen, P.R. China
- School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, P.R. China
| |
Collapse
|
3
|
Karami Y, Ehtiati S, Ghasemi H, Rafiee M, Zamani Sani M, Hosseini SE, Moradi Kazerouni H, Movahedpour A, Aiiashi S, Khatami SH. Non-coding RNA biosensors for early detection of brain cancer. Clin Chim Acta 2025; 566:120041. [PMID: 39561887 DOI: 10.1016/j.cca.2024.120041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Brain cancer remains a formidable challenge with limited treatment options. Non-coding RNAs (ncRNAs) have emerged as promising biomarkers due to their dysregulation in tumorigenesis. This review explores the potential of biosensors for early detection of brain cancer by targeting ncRNAs. We discuss the classification and functions of ncRNAs, emphasizing their involvement in key cancer-related processes. Additionally, we delve into recent advancements in biosensor technology, focusing on their ability to accurately detect specific ncRNA biomarkers associated with brain cancer. Our findings underscore the potential of biosensors to revolutionize brain cancer diagnosis, enabling personalized medicine and improving patient outcomes. Future research should focus on refining biosensor technology and expanding their clinical application.
Collapse
Affiliation(s)
- Yousof Karami
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences University of Wyoming 1174 Snowy Range Road Laramie, WY 82070, USA
| | - Maryam Zamani Sani
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Edris Hosseini
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Xiao B, Xiang Q, Deng Z, Chen D, Wu S, Zhang Y, Liang Y, Wei S, Luo G, Li L. KCNN1 promotes proliferation and metastasis of breast cancer via ERLIN2-mediated stabilization and K63-dependent ubiquitination of Cyclin B1. Carcinogenesis 2023; 44:809-823. [PMID: 37831636 PMCID: PMC10818095 DOI: 10.1093/carcin/bgad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Potassium Calcium-Activated Channel Subfamily N1 (KCNN1), an integral membrane protein, is thought to regulate neuronal excitability by contributing to the slow component of synaptic after hyperpolarization. However, the role of KCNN1 in tumorigenesis has been rarely reported, and the underlying molecular mechanism remains unclear. Here, we report that KCNN1 functions as an oncogene in promoting breast cancer cell proliferation and metastasis. KCNN1 was overexpressed in breast cancer tissues and cells. The pro-proliferative and pro-metastatic effects of KCNN1 were demonstrated by CCK8, clone formation, Edu assay, wound healing assay and transwell experiments. Transcriptomic analysis using KCNN1 overexpressing cells revealed that KCNN1 could regulate key signaling pathways affecting the survival of breast cancer cells. KCNN1 interacts with ERLIN2 and enhances the effect of ERLIN2 on Cyclin B1 stability. Overexpression of KCNN1 promoted the protein expression of Cyclin B1, enhanced its stability and promoted its K63 dependent ubiquitination, while knockdown of KCNN1 had the opposite effects on Cyclin B1. Knockdown (or overexpression) ERLNI2 partially restored Cyclin B1 stability and K63 dependent ubiquitination induced by overexpression (or knockdown) of KCNN1. Knockdown (or overexpression) ERLIN2 also partially neutralizes the effects of overexpression (or knockdown) KCNN1-induced breast cancer cell proliferation, migration and invasion. In paired breast cancer clinical samples, we found a positive expression correlations between KCNN1 and ERLIN2, KCNN1 and Cyclin B1, as well as ERLIN2 and Cyclin B1. In conclusion, this study reveals, for the first time, the role of KCNN1 in tumorigenesis and emphasizes the importance of KCNN1/ERLIN2/Cyclin B1 axis in the development and metastasis of breast cancer.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Zihua Deng
- Department of General Surgery Section 5, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| | - Daxiang Chen
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Yaru Liang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Shi Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoqing Luo
- Department of General Surgery Section 5, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
5
|
Wang W, Ye S, Yang J, Huang Z, Lin L, Zhu Y, Chen D. Effect of microRNA-1246 Derived from Exosomes on Apoptosis of Astroglioma Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glioma is a common cancer in the central system. Exosomes play a key role in malignancies. This study mainly investigates the effect and mechanism of microRNA-1246 from self-derived exosomes on the apoptotic activities of astroglioma cells. Samples of malignant glioma were collected
to measure microRNA-1246 expression. The glioma cells were cultured and their secreted exosomes were collected. Cells were randomized into NC group, miRNA-1246-mimic group and miRNA-1246-inhibitor group followed by analysis of invasion capability, expression of miR-1246 and CAMD1 gene, and
AMD1 and apoptosis-related proteins expression by Western-blot as well as the relationship between miRNA-1246 and CAMD1. Under electron microscope, exosomes exhibited round shapes with a diameter of 50–290 nm and a positive expression of CD9 and CD63. miRNA-1246 was upregulated in exosomes
from astroglioma patients. miRNA-1246 downregulated CADMI and apoptosis-related protein Bcl-2, but upregulated Caspase-3 and pro-apoptosis proteins in glioma cells. Moreover, miRNA-1246 facilitates astroglioma cells invasion while restraining apoptotic activities. CADM1 was confirmed to be
a target of miRNA-1246. In conclusion, miR-1246 is highly expressed in exosomes that originated from astroglioma cells and suppressed the apoptosis of glioma cells via targeting CAMD1 genes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Sunzhi Ye
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiajia Yang
- Department of Neurology, The First Hospital Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhaofeng Huang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Luyang Lin
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yingying Zhu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
6
|
Zhang G, Fu L, Wang Y, Liu B, Ma S, Ma H, Zhang H, Zhang F, Yang K, Cai H. Integrative pan-cancer analysis indicates the prognostic importance of long noncoding RNA SNHG17 in human cancers. Pathol Res Pract 2022; 238:154140. [PMID: 36167008 DOI: 10.1016/j.prp.2022.154140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cancer is one of the most widespread causes of death today. Early diagnosis can dramatically reduce cancer-related mortality. Studies have shown that the lncRNA Small Nucleolar RNA Host Gene 17 (SNHG17) is aberrantly expressed in various types of solid tumors. Nevertheless, its prognostic value remains to be elucidated. The main objective of this meta-analysis was to elucidate whether SNHG17 can be considered as a potential prognostic biomarker for a variety of cancers. METHODS Correlational studies were screened from Cochrane, Embase, PubMed, and Web of Science. Hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were pooled, and the role of SNHG17 in cancer was analyzed. The Cancer Genome Atlas (TCGA) database was employed to verify the results. RESULTS Seventeen original papers including 1451 patients were included in the meta-analysis. SNHG17 expression was upregulated in various cancers. Overexpression of SNHG17 was significantly correlated with worse overall survival (OS) (HR = 1.92, 95% CI 1.55-2.37, P < 0.001) and relapse-free survival (RFS) (HR = 1.87, 95% CI 1.06-3.30, P = 0.030). Furthermore, overexpression of SNHG17 was predictive of earlier lymph node metastasis (LNM) (OR = 2.94, 95% CI 2.29-3.78, P < 0.001), more advanced tumor-node-metastases (TNM) stage (OR = 3.56, 95% CI 2.22-5.68, P < 0.001), larger tumor size (OR = 2.18, 95% CI 1.65-2.88, P < 0.001), worse differentiation grade (OR = 1.69, 95% CI 1.26-2.25, P < 0.001), and earlier distant metastasis (DM) (OR = 1.63, 95% CI 1.03-2.56, P = 0.033) in human cancers. Moreover, further inquiry based on TCGA dataset validated that SNHG17 was high expression in various tumors and foresaw unfavorable clinical prognosis. CONCLUSIONS Overexpression of SNHG17 correlates with poor prognosis and advanced clinicopathological features in cancer patients and may be a potential prognostic indicator and a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Guangming Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; Gansu Provincial Hospital, Lanzhou 730000, China
| | - Liangyin Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; Gansu Provincial Hospital, Lanzhou 730000, China
| | | | - Bin Liu
- Gansu Provincial Hospital, Lanzhou 730000, China
| | - Shixun Ma
- Gansu Provincial Hospital, Lanzhou 730000, China
| | - Haizhong Ma
- Gansu Provincial Hospital, Lanzhou 730000, China
| | - Helin Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Fan Zhang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Cai
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou 730000, China; General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; Gansu Provincial Hospital, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
7
|
Zhang N, Sun Y, Wang T, Xu X, Cao M. Enabling factor for cancer hallmark acquisition: Small nucleolar RNA host gene 17. Front Oncol 2022; 12:974939. [PMID: 36185210 PMCID: PMC9515549 DOI: 10.3389/fonc.2022.974939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The role of long non-coding RNA (lncRNA) in human tumors has gradually received increasing attention in recent years. Particularly, the different functions of lncRNAs in different subcellular localizations have been widely investigated. The upregulation of lncRNA small nucleolar RNA host gene 17 (SNHG17) has been observed in various human tumors. Growing evidence has proved that SNHG17 plays a tumor-promoting role in tumorigenesis and development. This paper describes the molecular mechanisms by which SNHG17 contributes to tumor formation and development. The different functions of SNHG17 in various subcellular localizations are also emphasized: its function in the cytoplasm as a competing endogenous RNA (ceRNA), its action in the nucleus as a transcriptional coactivator, and its function through the polycomb repressive complex 2 (PRC2)-dependent epigenetic modifications that regulate transcriptional processes. Finally, the correlation between SNHG17 and human tumors is summarized. Its potential as a novel prognostic and diagnostic biomarker for cancer is explored especially.
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tuo Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyuan Xu
- Medical Affairs Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Mengru Cao,
| |
Collapse
|
8
|
Ma L, Gao J, Zhang N, Wang J, Xu T, Lei T, Zou X, Wei C, Wang Z. Long noncoding RNA SNHG17: a novel molecule in human cancers. Cancer Cell Int 2022; 22:104. [PMID: 35248073 PMCID: PMC8897953 DOI: 10.1186/s12935-022-02529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 01/13/2023] Open
Abstract
AbstractMany studies in recent years have found that dysregulation of long non-coding RNAs (lncRNAs) can contribute to disease. Small nucleolar RNA host gene 17 (SNHG17) is a novel cancer-related lncRNA of the SNHG family which is highly expressed in various tumors and may exert oncogenic functions. Several studies have demonstrated that SNHG17 is closely related to the proliferation, migration, invasion, apoptosis, and chemical drug resistance of tumor cells, and clinical studies have found an association between high SNHG17 expression and poor prognosis. In this review, we summarize relevant studies investigating SNHG17, focusing on its biological function as well as its potential value for clinical applications.
Collapse
|
9
|
Tamtaji OR, Derakhshan M, Rashidi Noshabad FZ, Razaviyan J, Hadavi R, Jafarpour H, Jafari A, Rajabi A, Hamblin MR, Mahabady MK, Taghizadieh M, Mirzaei H. Non-Coding RNAs and Brain Tumors: Insights Into Their Roles in Apoptosis. Front Cell Dev Biol 2022; 9:792185. [PMID: 35111757 PMCID: PMC8801811 DOI: 10.3389/fcell.2021.792185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
A major terrifying ailment afflicting the humans throughout the world is brain tumor, which causes a lot of mortality among pediatric and adult solid tumors. Several major barriers to the treatment and diagnosis of the brain tumors are the specific micro-environmental and cell-intrinsic features of neural tissues. Absence of the nutrients and hypoxia trigger the cells' mortality in the core of the tumors of humans' brains: however, type of the cells' mortality, including apoptosis or necrosis, has been not found obviously. Current studies have emphasized the non-coding RNAs (ncRNAs) since their crucial impacts on carcinogenesis have been discovered. Several investigations suggest the essential contribution of such molecules in the development of brain tumors and the respective roles in apoptosis. Herein, we summarize the apoptosis-related non-coding RNAs in brain tumors.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Javad Razaviyan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razie Hadavi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Jafarpour
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rajabi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Cao S, Li H, Li L. LncRNA SNHG17 Contributes to the Progression of Cervical Cancer by Targeting microRNA-375-3p. Cancer Manag Res 2021; 13:4969-4978. [PMID: 34188550 PMCID: PMC8236284 DOI: 10.2147/cmar.s312469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Cervical cancer is a great threat to women’s health all over the world. Non-coding RNAs performed a wide range of functions. This study aimed to clarify the clinical significance and biological function of lncRNA SNHG17 and miRNA-375-3p (miR-375-3p) in cervical cancer (CC). Patients and Methods Blood samples from 124 CC patients and 119 healthy volunteers were collected. The relative expression of SNHG17 and miR-375-3p in CC patient serums and cells was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The receiver operating curve (ROC) was plotted for diagnostic value estimation. The CCK-8 and transwell assay were conducted to explore the function of SNHG17 on CC cells. A luciferase reporter assay was carried out to confirm the interaction of SNHG17 and miR-375-3p. Rescue experiments were performed to verify the interaction. Results SNHG17 showed an ascending expression while miR-375-3p descended in the serum of CC patients. For SNHG17 and miR-375-3p, respectively, the AUC was 0.863 and 0.869, the sensitivity was 84.7% and 75.8%, and the specificity was 78.2% and 86.6%. Knockdown of SNHG17 inhibited proliferation, migration, and invasion of CC cells. Serum SNHG17 expression was negatively correlated with miR-375-3p expression, and miR-375-3p was the target miRNA of SNHG17. Rescue experiments verified the knockdown of SNHG17 inhibited cell growth through repressing miR-375-3p expression. Conclusion SNHG17 and miR-375-3p have the potential to be diagnostic markers for CC. Overexpression of SNHG17 in CC promoted the progression of CC partly via targeting miR-375-3p, implying a novel therapeutic target for CC emerging.
Collapse
Affiliation(s)
- Shuping Cao
- Department of Gynecology, Dongying District People's Hospital, Dongying, Shandong, People's Republic of China
| | - Hongxia Li
- Department of Obstetrics, Dongying District People's Hospital, Dongying, Shandong, People's Republic of China
| | - Lei Li
- Department of Pathology, Dongying District People's Hospital, Dongying, Shandong, People's Republic of China
| |
Collapse
|