1
|
Zhou Q, Wu F, Zhang W, Guo Y, Jiang X, Yan X, Ke Y. Machine learning-based identification of a cell death-related signature associated with prognosis and immune infiltration in glioma. J Cell Mol Med 2024; 28:e18463. [PMID: 38847472 PMCID: PMC11157676 DOI: 10.1111/jcmm.18463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.
Collapse
Affiliation(s)
- Quanwei Zhou
- The National Key Clinical Specialty, Department of NeurosurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Fei Wu
- The National Key Clinical Specialty, Department of NeurosurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wenlong Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Youwei Guo
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xingjun Jiang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xuejun Yan
- NHC Key Laboratory of Birth Defect for Research and PreventionHunan Provincial Maternal and Child Health Care HospitalChangshaHunanChina
| | - Yiquan Ke
- The National Key Clinical Specialty, Department of NeurosurgeryZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Luo P, Yang J, Jian L, Dong J, Yin S, Luo C, Zhou S. Knockdown of PGBD5 inhibits the malignant progression of glioma through upregulation of the PPAR pathway. Int J Oncol 2024; 64:55. [PMID: 38577941 PMCID: PMC11015917 DOI: 10.3892/ijo.2024.5643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Glioma is the most common type of primary intracranial malignant tumor, and because of its high invasiveness and recurrence, its prognosis remains poor. The present study investigated the biological function of piggyBac transportable element derived 5 (PGBD5) in glioma. Glioma and para-cancerous tissues were obtained from five patients. Reverse transcription-quantitative PCR and western blotting were used to detect the expression levels of PGBD5. Transwell assay and flow cytometry were used to evaluate cell migration, invasion, apoptosis and cell cycle distribution. In addition, a nude mouse tumor transplantation model was established to study the downstream pathways of PGBD5 and the molecular mechanism was analyzed using transcriptome sequencing. The mRNA and protein expression levels of PGBD5 were increased in glioma tissues and cells. Notably, knockdown of PGBD5 in vitro could inhibit the migration and invasion of glioma cells. In addition, the knockdown of PGBD5 expression promoted apoptosis and caused cell cycle arrest in the G2/M phase, thus inhibiting cell proliferation. Furthermore, in vivo experiments revealed that knockdown of PGBD5 expression could inhibit Ki67 expression and slow tumor growth. Changes in PGBD5 expression were also shown to be closely related to the peroxisome proliferator-activated receptor (PPAR) signaling pathway. In conclusion, interference with PGBD5 could inhibit the malignant progression of glioma through the PPAR pathway, suggesting that PGBD5 may be a potential molecular target of glioma.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan 650500, P.R. China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Jinhong Yang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Lipeng Jian
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Jigen Dong
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Shi Yin
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Chao Luo
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
| | - Shuai Zhou
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Yunnan 650500, P.R. China
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan 650500, P.R. China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Zhang L, Qu X, Xu Y. Molecular and immunological features of TREM1 and its emergence as a prognostic indicator in glioma. Front Immunol 2024; 15:1324010. [PMID: 38370418 PMCID: PMC10869492 DOI: 10.3389/fimmu.2024.1324010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1), which belongs to the Ig-like superfamily expressed on myeloid cells, is reportedly involved in various diseases but has rarely been studied in glioma. In this study, the prognostic value and functional roles of TREM2 in glioma were analyzed. TERM1 was observed to be significantly upregulated in GBM compared to in other grade gliomas and was associated with poor prognosis. Increased TREM1 accompanied distinct mutation and amplification of driver oncogenes. Moreover, gene ontology and KEGG analyses showed that TREM1 might play a role in immunologic biological processes in glioma. TREM1 was also found to be tightly correlated with immune checkpoint molecules. xCell research revealed a link between TREM1 expression and multiple immune cell types, especially monocytes and macrophages. Single-cell analysis and immunofluorescence results showed that macrophages expressed TREM1. In vitro, inhibition of TREM1 signaling could result in a decrease in tumor-promoting effects of monocytes/TAMs. In summary, TREM1 may be a potential independent prognostic factor and immune target, which might provide new avenues to improve the efficacy of immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
4
|
Wang Z, Liu Y, Zhan X, Wang X, Zhang C, Qin L, Liu L, Qin S. A novel prognostic signature of metastasis-associated genes and personalized therapeutic strategy for lung adenocarcinoma patients. Aging (Albany NY) 2022; 14:5571-5589. [PMID: 35830566 PMCID: PMC9320549 DOI: 10.18632/aging.204169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/18/2022] [Indexed: 01/01/2023]
Abstract
Lung adenocarcinoma (LUAD) is a highly invasive and metastatic malignant tumor with high morbidity and mortality. This study aimed to construct a prognostic signature for LUAD patients based on metastasis-associated genes (MAGs). RNA expression profiles were downloaded from the Cancer Genome Atlas (TCGA) database. RRA method was applied to identify differentially expressed MAGs. A total of 192 significantly robust MAGs were determined among seven GEO datasets. MAGs were initially selected through the Lasso Cox regression analysis and 6 MAGs were included to construct a prognostic signature model. Transcriptome profile, patient prognosis, correlation between the risk score and clinicopathological features, immune cell infiltration characteristics, immunotherapy sensitivity and chemotherapy sensitivity differed between low- and high-risk groups after grouping according to median risk score. The reliability and applicability of the signature were further validated in the GSE31210, GSE50081 and GSE68465 cohort. CMap predicted 62 small molecule drugs on the base of the prognostic MAGs. Targeted drug staurosporine had hydrogen bonding with Gln-172 of SLC2A1, which is one of MAGs. Staurosporine could inhibit cell migration in A549 and H1299. We further verified mRNA and protein expression of 6 MAGs in A549 and H1299. The signature can serve as a promising prognostic tool and may provide a novel personalized therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Zhihao Wang
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Yusi Liu
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Xiaoqian Zhan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Liu Y, Ma J, Song JS, Zhou HY, Li JH, Luo C, Geng X, Zhao HX. DNA topoisomerase II alpha promotes the metastatic characteristics of glioma cells by transcriptionally activating β-catenin. Bioengineered 2022; 13:2207-2216. [PMID: 35012441 PMCID: PMC8974225 DOI: 10.1080/21655979.2021.2023985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
DNA topoisomerase II alpha (TOP2A) reportedly plays a crucial role in several cancers, however, the precise regulatory role of TOP2A in metastatic characteristics of glioma is still poorly understood. Herein, we sought to elucidate the mechanisms by which TOP2A affects the metastatic phenotypes of glioma. We observed that a high level of TOP2A expression was dramatically linked with inferior survival in glioma patients while silencing of TOP2A impaired glioma cell proliferation and aggressiveness. TOP2A was found to directly interact with β-catenin and facilitated its translocation into the nucleus. Mechanistically, TOP2A effectively induced glioma cell growth and invasion in a β-catenin-dependent manner. Overall, we pinpoint TOP2A as a critical activator of the Wnt/β-catenin pathway in glioma, promoting cell growth, migration, and invasion.
Collapse
Affiliation(s)
- Yi Liu
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jun Ma
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jiu-Shan Song
- Pediatric Department, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hai-Ying Zhou
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing-Hui Li
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Cheng Luo
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin Geng
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - He-Xiang Zhao
- Department II of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Definition of an Inflammatory Biomarker Signature in Plasma-Derived Extracellular Vesicles of Glioblastoma Patients. Biomedicines 2022; 10:biomedicines10010125. [PMID: 35052804 PMCID: PMC8773644 DOI: 10.3390/biomedicines10010125] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GB) is an aggressive type of tumour for which therapeutic options and biomarkers are limited. GB diagnosis mostly relies on symptomatic presentation of the tumour and, in turn, brain imaging and invasive biopsy that can delay its diagnosis. Description of easily accessible and effective biomarkers present in biofluids would thus prove invaluable in GB diagnosis. Extracellular vesicles (EVs) derived from both GB and stromal cells are essential to intercellular crosstalk in the tumour bulk, and circulating EVs have been described as a potential reservoir of GB biomarkers. Therefore, EV-based liquid biopsies have been suggested as a promising tool for GB diagnosis and follow up. To identify GB specific proteins, sEVs were isolated from plasma samples of GB patients as well as healthy volunteers using differential ultracentrifugation, and their content was characterised through mass spectrometry. Our data indicate the presence of an inflammatory biomarker signature comprising members of the complement and regulators of inflammation and coagulation including VWF, FCGBP, C3, PROS1, and SERPINA1. Overall, this study is a step forward in the development of a non-invasive liquid biopsy approach for the identification of valuable biomarkers that could significantly improve GB diagnosis and, consequently, patients’ prognosis and quality of life.
Collapse
|
7
|
Sun W, Zhou H, Han X, Hou L, Xue X. Circular RNA: A novel type of biomarker for glioma (Review). Mol Med Rep 2021; 24:602. [PMID: 34165178 PMCID: PMC8240176 DOI: 10.3892/mmr.2021.12240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
With the rapid development of sequencing technologies, the characteristics and functions of circular RNAs (circRNAs) in different tissues, and their underlying pathophysiological mechanisms, have been identified. circRNAs are significantly enriched in the brain and are continually expressed from the embryonic stage to the adult stage in rats. Previous studies have reported that certain circRNAs are differentially expressed in glioma and regulate a number of biological processes, such as cell proliferation, metastasis and oncogenesis of glioma. Furthermore, certain circRNAs have been associated with tumor size, World Health Organization tumor grade and poor prognosis in patients with glioma. It has been hypothesized that circRNAs may be involved in the onset and progression of glioma through transcriptional regulation, protein translation and binding to microRNAs. These properties and functions suggest the potential of circRNAs as prognostic biomarkers and therapeutic targets for glioma. For the present review, published studies were examined from PubMed, Embase, Cochrane Central and the reference lists of the retrieved articles. The aim of the present review was to summarize the progress of circRNA research in glioma, discuss the potential diagnostic and prognostic values, and the roles of circRNAs in glioma, and provide a novel theoretical basis and research concepts for the prediction, diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|