1
|
Marrone S, Scalia G, Atallah O, Scibilia G, Palmisciano P, Chaurasia B, Maugeri R, Iacopino DG, Graziano F, Mastronardi L, Tomasi OS, Naimo J, Ferini G, Scollo P, Umana GE. Exploit the γ-Glutamyl hydroxymethyl rhodamine green fluorescence in surgical resection: A systematic literature review on clinical indications, fields of application and outcomes. Neurosurg Rev 2025; 48:335. [PMID: 40148698 DOI: 10.1007/s10143-025-03484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/20/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
γ-Glutamyl Hydroxymethyl Rhodamine Green (γ-GHRG) fluorescence is a novel fluorescent agent used to enhance tissue visualization during surgical resections, especially in oncological procedures. This systematic review aims to evaluate the efficacy of γ-GHRG fluorescence in improving tumor margin detection, reducing recurrence rates, and enhancing surgical precision. A comprehensive search was conducted across PubMed, Embase, and Cochrane databases up to February 2024, following PRISMA guidelines. A total of 23 studies investigating the use of γ-GHRG fluorescence in surgical resection were included. Data on tumor visualization, surgical margin detection, and postoperative outcomes were analyzed. The included studies demonstrated that γ-GHRG fluorescence significantly improved tumor visualization in a variety of cancers, including ovarian cancer (26.1%), breast cancer (8.7%), lung cancer (8.7%), colorectal cancer (8.7%), kidney cancer (8.7%), head and neck cancer (8.7%), esophageal and gastric cancer (8.7%), prostate cancer (8.7%), brain tumors (gliomas) (4.3%), and liver cancer (4.3%). The probe's high specificity for γ-glutamyl transpeptidase (GGT), which is overexpressed in cancer cells, enabled real-time visualization of tumor margins, allowing for more precise resections. Studies also reported shorter surgical times and lower recurrence rates, particularly in high-grade tumors such as gliomas (4.3%). Although the results are promising, issues related to false positives, tissue specificity, and long-term safety were noted. γ-GHRG fluorescence shows significant potential in enhancing surgical outcomes by providing real-time guidance during tumor resections. Its high specificity for GGT and rapid fluorescence activation make it a valuable tool in cancer surgery. However, further clinical studies are required to address challenges related to sensitivity, specificity, and long-term safety, as well as to explore its application across different cancer types and surgical settings.
Collapse
Affiliation(s)
- Salvatore Marrone
- Department of Neurosurgery, Sant'Elia Hospital, Caltanissetta, Italy
| | - Gianluca Scalia
- Neurosurgery Unit, Highly Specialized Hospital of National Importance "Garibaldi", Catania, Italy.
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy.
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Giuseppe Scibilia
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | - Paolo Palmisciano
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | | | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP ''Paolo Giaccone'', Palermo, Italy
| | - Domenico Gerardo Iacopino
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, Postgraduate Residency Program in Neurological Surgery, Neurosurgical Clinic, AOUP ''Paolo Giaccone'', Palermo, Italy
| | - Francesca Graziano
- Neurosurgery Unit, Highly Specialized Hospital of National Importance "Garibaldi", Catania, Italy
| | | | - Ottavio S Tomasi
- Department of Neurosurgery, AUVA Unfallkrankenhaus, Salzburg, Austria
| | - Jessica Naimo
- Pain Therapy and Palliative Care Unit, ASP 7 Ragusa, Ragusa, Italy
| | - Gianluca Ferini
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
- Department of Radiation Oncology, REM Radioterapia Srl, Viagrande, Italy
| | - Paolo Scollo
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | - Giuseppe Emmanuele Umana
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
2
|
Feng Z, Hao Z, Zhao B, Feng Z, Huang D, Huo J. Fluorescent probe applications and prospects in gastrointestinal cancer: A bibliometric analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108565. [PMID: 39059192 DOI: 10.1016/j.ejso.2024.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Gastrointestinal tumors, as one of the most common cancers worldwide, pose a significant threat to human health. In this context, the advent of fluorescence probe technology has offered new perspectives and methods for the diagnosis and surgical treatment of gastrointestinal tumors. However, there is currently a lack of systematic bibliometric analysis on the research concerning gastrointestinal cancer and fluorescence probes. METHOD This study retrieved and comprehensively analyzed 1816 documents from the Web of Science database using the Cite Space tool, exploring the spatiotemporal distribution, author and subject category distribution, research themes, and keywords in this field. RESULTS As of February 3, 2024, a total of 1816 records were retrieved, encompassing nine document types. Original research papers dominated the dataset, accounting for 89.922 %, followed by review articles at 6.773 %. We conducted a comprehensive analysis from various perspectives including countries, authors, institutions, keywords, journals, and references. Our findings reveal a strengthening trend in research on gastrointestinal cancer and fluorescent probes since 2010, with primary focus on drug delivery, endoscopy techniques, and genomic hybridization. CONCLUSION In recent years, there has been a growing interest in the design, application, and quantitative analysis techniques of fluorescent probes, marking a notable frontier in this field. Our research findings offer fundamental insights and aid in identifying potential collaborators for future endeavors in this area.
Collapse
Affiliation(s)
- Zhiyuan Feng
- The Fifth Clinical Medical College of Shanxi Medical University, Department of Orthodontics, Shanxi Provincial People's Hospital, Taiyuan, China; Shanxi Academy of Advanced Research and Innovation (SAARI), NO.7, Xinhua Road, Xiaodian District, Taiyuan, China; School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, China.
| | - Zhaonan Hao
- School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, China
| | - Baoling Zhao
- School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, China
| | - Zezhou Feng
- School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University, Taiyuan, China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jianzhong Huo
- The Second Clinical Hospital and the Second Clinical Medical College of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Fujisaki M, Nomura T, Yamashita H, Uenosono Y, Fukunaga T, Otsuji E, Takahashi M, Matsumoto H, Oshio A, Nakada K. Impact of Tumor Location on the Quality of Life of Patients Undergoing Total or Proximal Gastrectomy. J Gastric Cancer 2022; 22:235-247. [PMID: 35938369 PMCID: PMC9359888 DOI: 10.5230/jgc.2022.22.e23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Most studies have investigated the differences in postgastrectomy quality of life (QOL) based on the surgical procedure or reconstruction method adopted; only a few studies have compared QOL based on tumor location. This large-scale study aims to investigate the differences in QOL between patients with esophagogastric junction cancer (EGJC) and those with upper third gastric cancer (UGC) undergoing the same gastrectomy procedure to evaluate the impact of tumor location on postoperative QOL. Methods The Postgastrectomy Syndrome Assessment Scale-45 (PGSAS-45) questionnaire was distributed in 70 institutions to 2,364 patients who underwent gastrectomy for EGJC or UGC. A total of 1,909 patients were eligible for the study, and 1,744 patients who underwent total gastrectomy (TG) or proximal gastrectomy (PG) were selected for the final analysis. These patients were divided into EGJC and UGC groups; thereafter, the PGSAS-45 main outcome measures (MOMs) were compared between the two groups for each type of gastrectomy. Results Among the post-TG patients, only one MOM was significantly better in the UGC group than in the EGJC group. Conversely, among the post-PG patients, postoperative QOL was significantly better in 6 out of 19 MOMs in the UGC group than in the EGJC group. Conclusions Tumor location had a minimal effect on the postoperative QOL of post-TG patients, whereas among post-PG patients, there were definite differences in postoperative QOL between the two groups. It seems reasonable to conservatively estimate the benefits of PG in patients with EGJC compared to those in patients with UGC.
Collapse
Affiliation(s)
- Muneharu Fujisaki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Takashi Nomura
- Department of Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hiroharu Yamashita
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshikazu Uenosono
- Department of Digestive Surgery, Imamura General Hospital, Kagoshima, Japan
| | - Tetsu Fukunaga
- Department of Gastroenterology and Minimally Invasive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | - Atsushi Oshio
- Faculty of Letters, Arts and Sciences, Waseda University, Tokyo, Japan
| | - Koji Nakada
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Kawashima S, Yoshida D, Yoshioka T, Ogasawara A, Fujita K, Yanagiya M, Nagano M, Konoeda C, Hino H, Kitano K, Sato M, Hino R, Kojima R, Komatsu T, Kamiya M, Urano Y, Nakajima J. Rapid imaging of lung cancer using a red fluorescent probe to detect dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase activities. Sci Rep 2022; 12:9100. [PMID: 35650221 PMCID: PMC9160295 DOI: 10.1038/s41598-022-12665-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Rapid identification of lung-cancer micro-lesions is becoming increasingly important to improve the outcome of surgery by accurately defining the tumor/normal tissue margins and detecting tiny tumors, especially for patients with low lung function and early-stage cancer. The purpose of this study is to select and validate the best red fluorescent probe for rapid diagnosis of lung cancer by screening a library of 400 red fluorescent probes based on 2-methyl silicon rhodamine (2MeSiR) as the fluorescent scaffold, as well as to identify the target enzymes that activate the selected probe, and to confirm their expression in cancer cells. The selected probe, glutamine-alanine-2-methyl silicon rhodamine (QA-2MeSiR), showed 96.3% sensitivity and 85.2% specificity for visualization of lung cancer in surgically resected specimens within 10 min. In order to further reduce the background fluorescence while retaining the same side-chain structure, we modified QA-2MeSiR to obtain glutamine-alanine-2-methoxy silicon rhodamine (QA-2OMeSiR). This probe rapidly visualized even borderline lesions. Dipeptidyl peptidase 4 and puromycin-sensitive aminopeptidase were identified as enzymes mediating the cleavage and consequent fluorescence activation of QA-2OMeSiR, and it was confirmed that both enzymes are expressed in lung cancer. QA-2OMeSiR is a promising candidate for clinical application.
Collapse
Affiliation(s)
- Shun Kawashima
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Yoshida
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takafusa Yoshioka
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Ogasawara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohhei Fujita
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Yanagiya
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaaki Nagano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Konoeda
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruaki Hino
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Hino
- Department of Sports and Health Science, Daito Bunka University, Saitama, Japan
| | - Ryosuke Kojima
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
6
|
Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2022; 19:9-22. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Fluorescence-guided surgery using tumour-targeted imaging agents has emerged over the past decade as a promising and effective method of intraoperative cancer detection. An impressive number of fluorescently labelled antibodies, peptides, particles and other molecules related to cancer hallmarks have been developed for the illumination of target lesions. New approaches are being implemented to translate these imaging agents into the clinic, although only a few have made it past early-phase clinical trials. For this translational process to succeed, target selection, imaging agents and their related detection systems and clinical implementation have to operate in perfect harmony to enable real-time intraoperative visualization that can benefit patients. Herein, we review key aspects of this imaging cascade and focus on imaging approaches and methods that have helped to shed new light onto the field of intraoperative fluorescence-guided cancer surgery with the singular goal of improving patient outcomes.
Collapse
|
7
|
Ogawa S, Kubo H, Murayama Y, Kubota T, Yubakami M, Matsumoto T, Yamamoto Y, Morimura R, Ikoma H, Okamoto K, Kamiya M, Urano Y, Otsuji E. Rapid fluorescence imaging of human hepatocellular carcinoma using the β-galactosidase-activatable fluorescence probe SPiDER-βGal. Sci Rep 2021; 11:17946. [PMID: 34504174 PMCID: PMC8429424 DOI: 10.1038/s41598-021-97073-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fluorescence imaging of tumours facilitates rapid intraoperative diagnosis. Thus far, a promising activatable fluorescence probe for hepatocellular carcinoma (HCC) has not been developed. Herein, the utility of the fluorescence imaging of HCC using a β-galactosidase (β-Gal)-activatable fluorescence probe SPiDER-βGal was examined. β-Gal activity was measured in cryopreserved tissues from 68 patients. Live cell imaging of HCC cell lines and imaging of tumour-bearing model mice were performed using SPiDER-βGal. Furthermore, fluorescence imaging was performed in 27 freshly resected human HCC specimens. In cryopreserved samples, β-Gal activity was significantly higher in tumour tissues than in non-tumour tissues. Fluorescence was observed in HCC cell lines. In mouse models, tumours displayed stronger fluorescence than normal liver tissue. In freshly resected specimens, fluorescence intensity in the tumour was significantly higher than that in non-tumour liver specimens as early as 2 min after spraying. Receiver operating characteristic curves were generated to determine the diagnostic value of SPiDER-βGal 10 min after its spraying; an area under the curve of 0.864, sensitivity of 85.2%, and specificity of 74.1% were observed for SPiDER-βGal. SPiDER-βGal is useful for the rapid fluorescence imaging of HCC. Fluorescence imaging guided by SPiDER-βGal would help surgeons detect tumours rapidly and achieve complete liver resection.
Collapse
Affiliation(s)
- Soichiro Ogawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hidemasa Kubo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masayuki Yubakami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsuya Matsumoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- CREST (Japan) Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
8
|
Takahashi R, Ishizawa T, Sato M, Inagaki Y, Takanka M, Kuriki Y, Kamiya M, Ushiku T, Urano Y, Hasegawa K. Fluorescence Imaging Using Enzyme-Activatable Probes for Real-Time Identification of Pancreatic Cancer. Front Oncol 2021; 11:714527. [PMID: 34490111 PMCID: PMC8417470 DOI: 10.3389/fonc.2021.714527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Radical resection is the only curative treatment for pancreatic cancer, which is a life-threatening disease. However, it is often not easy to accurately identify the extent of the tumor before and during surgery. Here we describe the development of a novel method to detect pancreatic tumors using a tumor-specific enzyme-activatable fluorescence probe. Methods Tumor and non-tumor lysate or small specimen collected from the resected specimen were selected to serve as the most appropriate fluorescence probe to distinguish cancer tissues from noncancerous tissues. The selected probe was sprayed onto the cut surface of the resected specimen of cancer tissue to acquire a fluorescence image. Next, we evaluated the ability of the probe to detect the tumor and calculated the tumor-to-background ratio (TBR) by comparing the fluorescence image with the pathological extent of the tumor. Finally, we searched for a tumor-specific enzyme that optimally activates the selected probe. Results Using a library comprising 309 unique fluorescence probes, we selected GP-HMRG as the most appropriate activatable fluorescence probe. We obtained eight fluorescence images of resected specimens, among which four approximated the pathological findings of the tumor, which achieved the highest TBR. Finally, dipeptidyl-peptidase IV (DPP-IV) or a DPP-IV-like enzyme was identified as the target enzyme. Conclusion This novel method may enable rapid and real-time visualization of pancreatic cancer through the enzymatic activities of cancer tissues.
Collapse
Affiliation(s)
- Ryugen Takahashi
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masumitsu Sato
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshinori Inagaki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mariko Takanka
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Stewart HL, Birch DJS. Fluorescence Guided Surgery. Methods Appl Fluoresc 2021; 9. [PMID: 34399409 DOI: 10.1088/2050-6120/ac1dbb] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Fluorescence guided surgery (FGS) is an imaging technique that allows the surgeon to visualise different structures and types of tissue during a surgical procedure that may not be as visible under white light conditions. Due to the many potential advantages of fluorescence guided surgery compared to more traditional clinical imaging techniques such as its higher contrast and sensitivity, less subjective use, and ease of instrument operation, the research interest in fluorescence guided surgery continues to grow over various key aspects such as fluorescent probe development and surgical system development as well as its potential clinical applications. This review looks to summarise some of the emerging opportunities and developments that have already been made in fluorescence guided surgery in recent years while highlighting its advantages as well as limitations that need to be overcome in order to utilise the full potential of fluorescence within the surgical environment.
Collapse
Affiliation(s)
- Hazel L Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - David J S Birch
- Department of Physics, The Photophysics Research Group, University of Strathclyde, SUPA, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
10
|
Ogawa S, Kubo H, Murayama Y, Kubota T, Yubakami M, Matsumoto T, Ohashi T, Okamoto K, Kuriki Y, Hanaoka K, Urano Y, Otsuji E. Matrix metalloprotease-14 is a target enzyme for detecting peritoneal metastasis in gastric cancer. Photodiagnosis Photodyn Ther 2021; 35:102420. [PMID: 34242818 DOI: 10.1016/j.pdpdt.2021.102420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Accurate diagnosis of peritoneal metastasis in gastric cancer (GC) is important to determine the appropriate treatment. This study aimed to examine whether matrix metalloprotease-14 (MMP-14) was a candidate enzyme in fluorescence imaging for the diagnosis of peritoneal metastasis in GC. METHODS GC and normal peritoneal (NP) tissues from 96 and 20 patients, respectively were evaluated for MMP-14 expression. Live cell imaging of GC cell lines (NUGC4, MKN45, MKN74, HGC-27, and Kato-III) was performed using the MMP-14-activatable fluorescence probe; BODIPY-MMP. Furthermore, the overall survival (OS) was calculated in all patients (n = 96). RESULTS MMP-14 expression was significantly higher in GC tissues (median: 3.57 ng/mg protein; range:0.64-24.4 ng/mg protein) than in NP tissues (median: 1.34 ng/mg protein; median: 0.53-3.09 ng/mg protein) (P < 0.01). Receiver operating characteristic curves showed that the area under the curve, sensitivity, and specificity were 0.907, 84.4%, and 90.0%, respectively. In live cell imaging using the BODIPY-MMP, fluorescence was observed in five GC cell lines. In the analysis of OS, the high expression of the MMP-14 group had a significantly poorer OS rate than the low expression of the MMP-14 group (P = 0.02). In the multivariate analyses, MMP-14 expression was an independent risk factor for OS (hazard ratio: 2.33; 95 % confidence interval: 1.05-5.45; P = 0.04). CONCLUSION MMP-14 is a promising enzyme in intraoperative fluorescence imaging for peritoneal metastasis in GC, especially in patients with poor prognosis.
Collapse
Affiliation(s)
- Soichiro Ogawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Hidemasa Kubo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Masayuki Yubakami
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tatsuya Matsumoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST (Japan) Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|