1
|
Tazuru K, Sone M, Akamine H, Kogue Y, Sims MJ, Ward G, Smyth T, Matsuyama H, Sudo T. The IAP antagonist tolinapant enhances the anti-tumor activity of cell therapies. Eur J Pharmacol 2025; 995:177400. [PMID: 39984012 DOI: 10.1016/j.ejphar.2025.177400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Various gene-modified cell therapies have been investigated in clinical trials, among which chimeric antigen receptor (CAR)-T cell therapy has been approved for the treatment of B cell tumors and has shown remarkable therapeutic effects. However, challenges, such as, cancer recurrence and manufacturing issues remain. To overcome such limitations, we investigated whether combining CAR-T cells with tolinapant, an inhibitor of apoptosis proteins (IAP) antagonist with immunomodulatory activity, could enhance the anti-tumor effect. Tolinapant induced cancer cell death in the presence of TNF-α. Tumor killing by CAR-T, TCR-T or CÊNK cells was enhanced by tolinapant in vitro in a TNF-α-dependent manner. TNF-α secreted from CAR-T cells, in the presence of tolinapant, also induced cell death of antigen-negative cancer cells not in cell-cell contact with CAR-T cells. Addition of tolinapant potentiated efficacy of not only two different CAR-T, but also TCR-T and CAR-NK cells in vivo. Tolinapant treatment led to faster expansion of stimulated CAR-T cells in vitro and in vivo. Our study suggests that the combination of tolinapant improves the efficacy of cell-based cancer therapies by inducing both cancer cell death and CAR-T cell proliferation. This combination therapy may overcome the current limitations of cell-based therapies and enhance their anti-cancer effect.
Collapse
Affiliation(s)
- Keisuke Tazuru
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | - Masayuki Sone
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | - Hiroki Akamine
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | - Yosuke Kogue
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | | | | | | | - Hironori Matsuyama
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | - Toshiki Sudo
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| |
Collapse
|
2
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025:1-15. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
3
|
Li R, Grosskopf AK, Joslyn LR, Stefanich EG, Shivva V. Cellular Kinetics and Biodistribution of Adoptive T Cell Therapies: from Biological Principles to Effects on Patient Outcomes. AAPS J 2025; 27:55. [PMID: 40032717 DOI: 10.1208/s12248-025-01017-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
Cell-based immunotherapy has revolutionized cancer treatment in recent years and is rapidly expanding as one of the major therapeutic options in immuno-oncology. So far ten adoptive T cell therapies (TCTs) have been approved by the health authorities for cancer treatment, and they have shown remarkable anti-tumor efficacy with potent and durable responses. While adoptive T cell therapies have shown success in treating hematological malignancies, they are lagging behind in establishing promising efficacy in treating solid tumors, partially due to our incomplete understanding of the cellular kinetics (CK) and biodistribution (including tumoral penetration) of cell therapy products. Indeed, recent clinical studies have provided ample evidence that CK of TCTs can influence clinical outcomes in both hematological malignancies and solid tumors. In this review, we will discuss the current knowledge on the CK and biodistribution of anti-tumor TCTs. We will first describe the typical CK and biodistribution characteristics of these "living" drugs, and the biological factors that influence these characteristics. We will then review the relationships between CK and pharmacological responses of TCT, and potential strategies in enhancing the persistence and tumoral penetration of TCTs in the clinic. Finally, we will also summarize bioanalytical methods, preclinical in vitro and in vivo tools, and in silico modeling approaches used to assess the CK and biodistribution of TCTs.
Collapse
Affiliation(s)
- Ran Li
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Abigail K Grosskopf
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Louis R Joslyn
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Eric Gary Stefanich
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Vittal Shivva
- Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
4
|
Hou Y, Ye J, Qin K, Cui LA, Chung S, Chapla DG, Wang W, Shi Y, Chen M, Moremen KW, Sackstein R, Wu P. Enforced E-selectin ligand installation enhances homing and efficacy of adoptively transferred T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632650. [PMID: 39868097 PMCID: PMC11761414 DOI: 10.1101/2025.01.12.632650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Adoptive T-cell transfer has revolutionized the treatment of hematological malignancies. However, this approach has had very limited success in treating solid tumors, largely due to inadequate infiltration of vascularly administered T cells at tumor sites. The shear-resistant interaction between endothelial E-selectin and its cognate ligand expressed on leukocytes, sialyl Lewis X (sLeX), is an essential prerequisite for extravasation of circulating leukocytes. Here, we report that enforced E-selectin ligand expression (enforced sLeX display) on antigen-specific T cells can be achieved by fucosylating cells via cell surface treatment with the human α1-3-fucosyltransferase, FUT6 ("exofucosylation"), or via Golgi-targeted FUT6 overexpression ("Golgi-fucosylation"). However, despite comparable E-selectin binding, only sLeX-modified T cells engendered by exofucosylation, not by Golgi-fucosylation, exhibited enhanced parenchymal infiltration of target malignant sites. This heightened homing yielded significantly improved therapeutic efficacy in various murine syngeneic and xenograft cancer models, including subcutaneous solid tumors, lymphoma and leukemia, as well as lung and bone marrow metastases. Therefore, exofucosylation represents a promising strategy to improve the efficacy of adoptive T-cell therapy, particularly in the treatment of solid tumors and metastatic disease.
Collapse
Affiliation(s)
- Yingqin Hou
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Jinfeng Ye
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ke Qin
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Leigh-Ann Cui
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Shereen Chung
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Wenjian Wang
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Yujie Shi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Mingkuan Chen
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Kelley. W. Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Robert Sackstein
- Department of Translational Medicine & Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States
| | - Peng Wu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
5
|
Guo J, Wu Q, Li H, Liang C, Dai J, Zhang S, Dai C, Zhang J, Wen Y, Yang W. Preclinical delayed toxicity studies of BCMA CAR T-cell injection in B-NDG mice with multiple myeloma. Front Immunol 2024; 15:1435934. [PMID: 39606226 PMCID: PMC11598525 DOI: 10.3389/fimmu.2024.1435934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Based on the efficacy data from the previous study of B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell injection, we further examined the delayed toxicity for 8 weeks after a single dose of BCMA CAR T-cell injection to observe possible toxic reactions. Methods B-NDG mice transplanted with multiple myeloma (MM) cells were given a single dose of BCMA CAR T-cell injection at two dosages or human normal T cells and then subjected to examinations including clinical signs, weight and food intake measurements, haematology, blood biochemical analysis, cytokine assay, T-lymphocyte subpopulation quantification and histopathology on days 28 and 56 after dosing. In addition, quantitative polymerase chain reaction (qPCR) was used to quantify DNA fragments in different tissues to assess the tissue distribution of CAR and provide a basis for its preclinical safety evaluation and clinical dosing. Results In the delayed toxicity study, no mortality or significant toxic effects such as reductions in food intake, body weight, relevant biochemical parameters and target organ weights were observed in the BCMA CAR T-cell-treated groups. Compared to the model group, restorative changes in clinical signs and clinicopathology indicating therapeutic effects were seen in the BCMA CAR T-cell-treated groups. Human-derived cytokines interleukin-2 (IL-2), IL-4, IL-6, IL-12, IL-10, tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ) could be detected in all cancer cell-bearing mice by cytokine level measurement. IFN-γ levels showed a geometric increase due to the graft versus host disease (GVHD) response induced in the mice, while the levels of the other cytokines did not show significant changes. Histopathological examination indicated that the BCMA CAR T-cell treatment groups showed mixed cellular infiltration of human-derived T cells, cancer cells, and inflammatory cells in several target organs including the liver, spleen, lung, and kidney, and some of them showed mild tissue damage, but the number of the animals and the severity of damage were significantly less than those of the T-cell control group as well as the model group. The results of the tissue distribution study showed that BCMA CAR T cells were mainly concentrated in the kidney, lung, bone marrow and the related immune organs/tissues, and the distribution of BCMA CAR T cells was highly consistent with that of MM cells, suggesting that BCMA CAR T cells could follow the cancer cells during metastatic targeting of the tissues. Conclusions The present study demonstrated a low toxicity of BCMA CAR T-cell injection, with manageable side effects and good anticancer activity and without observable adverse effects. This study provides data to support future clinical studies of BCMA CAR T-cell injection for MM.
Collapse
Affiliation(s)
- Jianmin Guo
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Qiqi Wu
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Hongjian Li
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
- Shenzhen Pregene Biopharma Company Ltd., Research and Development (R&D) Department, Shenzhen, China
| | - Chun Liang
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Jinlong Dai
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Shuren Zhang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Cailing Dai
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Jishuai Zhang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Yuying Wen
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| | - Wei Yang
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co.,Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong Engineering Research Center for Innovative Drug Evaluation and Research, Guangzhou, China
- Guangdong Engineering Research Center for Cellular and Genetic Therapy Innovative Drugs, Shenzhen, China
| |
Collapse
|
6
|
Mahmood I. Prediction of First-in-Human Dose of Chimeric Antigen Receptor-T (CAR-T) Cells from Mice. Eur J Drug Metab Pharmacokinet 2024; 49:715-722. [PMID: 39304595 DOI: 10.1007/s13318-024-00918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND OBJECTIVE: Currently, there is no available method for the prediction of first-in-human (FIH) dose for chimeric antigen receptor-T (CAR-T) cells. The objective of this work was to predict the FIH dose of CAR-T cells from different doses given to mice. METHODS In this study, six scaling methods were evaluated for the prediction of FIH dose for CAR-T cells. The methods were body weight-based fixed exponents such as 1.0 and 0.75, human equivalent dose (HED) using exponents 0.33, two modified HED methods such as using total animal dose (in place of per kg basis) and body surface area in place of body weight using total animal dose with exponent 0.33 and a physiological factor derived from physiological parameters. The FIH doses of six CAR-T cells were predicted in this study. The predicted human doses were compared with the recommended human dose by the US-FDA for four CAR-T cell products, and the literature data were used for the remaining two CAR-T cells. RESULTS The results indicated that the two modified HED methods and physiological factor are the best and reliable methods for the prediction of FIH dose for CAR-T cells. CONCLUSIONS The proposed methods are simple and accurate in their predictive power and can be used on a spreadsheet.
Collapse
Affiliation(s)
- Iftekhar Mahmood
- Mahmood Clinical Pharmacology Consultancy, LLC, 1709, Piccard DR, Rockville, MD, 20850, USA.
| |
Collapse
|
7
|
Ramamurthy A, Tommasi A, Saha K. Advances in manufacturing chimeric antigen receptor immune cell therapies. Semin Immunopathol 2024; 46:12. [PMID: 39150566 DOI: 10.1007/s00281-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.
Collapse
Affiliation(s)
- Apoorva Ramamurthy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Kim JI, Park MY, Kwon E, Kang HJ, Kang BC. CD19 chimeric antigen receptor T cell therapy in leukemia xenograft mouse: Anti-leukemic efficacy, kinetics, and 4-week single-dose toxicity. Toxicol Appl Pharmacol 2023; 475:116628. [PMID: 37506978 DOI: 10.1016/j.taap.2023.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
CD19 Chimeric antigen receptor T (CAR-T) cell therapy has shown a promising response rate for relapsed/refractory B-cell malignancies. However, serious side effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome arose in early case reports. Though several preclinical and clinical studies of CAR-T cell therapy have been reported, there is a lack of toxicological assessments. This study was carried out as a preclinical assessment of CD19 CAR-T cell therapy, including the anti-leukemic efficacy, kinetics in peripheral blood, and 4-week single-dose toxicity evaluation in leukemia xenograft mice. Leukemia xenograft mice model was established by injecting 1.0 × 105 cells/mouse of luciferase-labeled human B cell acute lymphoblastic leukemia (B-ALL) cell line via the tail vein, and after 3 days, 2.0 or 4.0 × 106 cells/mouse of CD19 CAR-T cells were injected intravenously. CD19 CAR-T cells showed significant anti-leukemic efficacy, showing inhibition of tumor progression in the bioluminescence-based in-vivo imaging system. In the kinetics study using qPCR, CAR-T cells peaked in peripheral blood on day 60 in males and day 30 in females. In a 4-week single-dose toxicity study, CD19 CAR-T cell injected groups showed no mortality and toxicological signs, or changes in body weight, food/water consumption, hematology, clinical chemistry, organ weights, and histopathology compared to control groups. These results suggested that 4.0 × 106 cells/mouse of CD19 CAR-T cells were effective in B-ALL xenograft mice without serious side effects, so the no-observed adverse effect level (NOAEL) was estimated to be higher than 4.0 × 106 cells/mouse, under the condition examined in the current study.
Collapse
Affiliation(s)
- Joo-Il Kim
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Mi-Young Park
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, Korea.
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, Republic of Korea; Designed Animal Resource Center, Institute of Green Bio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
9
|
Yu Y, Ollodart J, Contino KF, Shiozawa Y. Immunotherapy as a potential treatment approach for currently incurable bone metastasis. J Bone Miner Metab 2023; 41:371-379. [PMID: 36752903 PMCID: PMC10251738 DOI: 10.1007/s00774-023-01404-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Once cancer metastasizes to the bone, the prognosis of cancer patients becomes extremely poor. Unfortunately, the current most successful treatment for bone metastasis can extend their survival by only a few months. Although recent studies have revealed promising impacts of cancer immunotherapies, their treatment efficacy on bone metastatic diseases remains controversial. Therefore, in this review, we discussed (i) preclinical and clinical evidence of the immunotherapeutic strategies for cancer bone metastasis, mainly focusing on cell-based immunotherapy, cytokine-based immunotherapy, and immune checkpoint blockade, and (ii) current shortcomings of immunotherapy for bone metastasis and their potential future directions. Although the evidence on treatment efficacy and safety, as well as long-term effects, is limited, immunotherapies could induce partial or complete remissions in a few cancer patients with bone metastasis. However, there are still hurdles, such as the immunosuppressive nature of the bone marrow microenvironment and poor distribution of cell-based immunotherapies to bone, that need to be overcome to enhance the treatment efficacy of immunotherapies on bone metastasis. While it is apparent that further investigation is needed regarding immunotherapeutic treatment efficacy in patients with bone metastasis, this therapy may prove to be clinically novel in this subset of cancer patients.
Collapse
Affiliation(s)
- Yang Yu
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Jenna Ollodart
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA.
| |
Collapse
|
10
|
Current and Future Perspectives for Chimeric Antigen Receptor T Cells Development in Poland. Biomedicines 2022; 10:biomedicines10112912. [PMID: 36428480 PMCID: PMC9687915 DOI: 10.3390/biomedicines10112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are genetically modified autologous T cells that have revolutionized the treatment of relapsing and refractory haematological malignancies. In this review we present molecular pathways involved in the activation of CAR-T cells, describe in details the structures of receptors and the biological activity of CAR-T cells currently approved for clinical practice in the European Union, and explain the functional differences between them. Finally, we present the potential for the development of CAR-T cells in Poland, as well as indicate the possible directions of future research in this area, including novel modifications and applications of CAR-T cells and CAR-natural killer (NK) cells.
Collapse
|
11
|
Taheri S. Cytokine Release Syndrome after Chimeric Antigen Receptor Transduced T-Cell Therapy in Cancers: A Systematic Review. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2022; 33:795-823. [PMID: 38018721 DOI: 10.4103/1319-2442.390259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Patients with refractory or relapsed malignant disorders are in desperate condition, with few therapeutic options left, if any. Chimeric antigen receptor (CAR) transduced T-cell transplantation is a novel approach that has shown promising results as well as serious adverse events. This study aimed to systematically review the current data on the cytokine release syndrome (CRS) as a major side effect of CAR therapy. A systematic literature review was conducted to find reports of CAR T-cell therapy in the context of cancer patients and to extract reports of severe CRS. The factors that could significantly affect the incidence of CRS were investigated. Mortality rates were also compared regarding the occurrence of CRS. The incidence of severe CRS was 9.4% (95% confidence interval: 8.3-10.5) in the reviewed studies. Younger and older patients (vs. adults), higher doses of CAR T-cell infusions, lymphodepletion (LD) before CAR T-cell infusions, specific LD regimens, the source of allogeneic cells for the construction of CAR, chronic lymphocytic leukemia as the tumor type (vs. lymphoma), and CD28 as costimulatory domain in the structure of CAR were significantly associated with CRS events. Patients experiencing severe CRS had a significantly higher mortality rate within 2 and 3 months after transplantation. In conclusion, this study found many factors that could predict severe CRS and future clinical trials could reveal the relevance of appropriate interventions to the incidence and outcomes of CRS in cancer patients undergoing CAR T-cell transduced infusions.
Collapse
Affiliation(s)
- Saeed Taheri
- Department of Medical Genetics, New Lahijan Scientific Foundation, Lahijan, Iran
| |
Collapse
|
12
|
Cellular kinetics: A clinical and computational review of CAR-T cell pharmacology. Adv Drug Deliv Rev 2022; 188:114421. [PMID: 35809868 DOI: 10.1016/j.addr.2022.114421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/20/2022]
Abstract
To the extent that pharmacokinetics influence the effectiveness of nonliving therapeutics, so too do cellular kinetics influence the efficacy of Chimeric Antigen Receptor (CAR) -T cell therapy. Like conventional therapeutics, CAR-T cell therapies undergo a distribution phase upon administration. Unlike other therapeutics, however, this distribution phase is followed by subsequent phases of expansion, contraction, and persistence. The magnitude and duration of these phases unequivocally influence clinical outcomes. Furthermore, the "pharmacodynamics" of CAR-T cells is truly dynamic, as cells can rapidly become exhausted and lose their therapeutic efficacy. Mathematical models are among the translational tools commonly applied to assess, characterize, and predict the complex cellular kinetics and dynamics of CAR-T cells. Here, we provide a focused review of the cellular kinetics of CAR-T cells, the mechanisms underpinning their complexity, and the mathematical modeling approaches used to interrogate them.
Collapse
|
13
|
[Optimization of CD19 chimeric antigen receptor T cell establishment and observation of the killing effect in vitro and in vivo]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:506-512. [PMID: 35968595 PMCID: PMC9800219 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: To optimize the stimulation and activation system of mouse CD3(+) T cells in vitro and explore the optimal infection time of CD3(+) T cells to establish mouse CD19 chimeric antigen receptor T cells (mCD19 CAR-T) , and to also verify its killing effect in vivo and in vitro. Method: Splenic CD3(+)T cells were isolated and purified using magnetic beads, and the cells were cultured in Soluble anti-CD3/CD28, PMA+Ionomycin, and Plated anti-CD3/CD28. Cell activation and apoptosis were assessed by flow cytometry after 8, 24, 48, and 72 hours. ScFv plasmid of mouse CD19 antibody was transfected to plat-E cells to package retrovirus. Activated CD3(+) T cells were infected to construct mouse-specific CD19 chimeric antigen receptor T cells (mCD19 CAR-T) , and mCD19 CAR-T cells were co-cultured with B-cell lymphoma cell line A20 in vitro. The specific toxicity of A20 was detected by flow cytometry, and mCD19 CAR-T cells were infused into the lymphoma mouse model to detect its killing effect and distribution. Results: The activation effect of Plated anti-CD3/CD28 on CD3(+) T cells was superior, with the cells exhibiting good viability 24-48 hours after stimulation. Established mCD19 CAR-T cells with stable efficiency[ (32.27±7.56) % ] were specifically able to kill A20 tumor cells (The apoptosis rate was 24.3% at 48 h) . In vivo detection showed a non-significant decrease in the percentage[ (1.83±0.58) % ] of splenic CD19(+) cells 6 days after mCD19 CAR-T cell infusion. A marked clearance in bone marrow and spleen appeared on day 12 compared with the A20 group, and this difference was statistically significant[spleen: (0.36±0.04) % vs (47.00±13.46) % , P<0.001; bone marrow: (1.82±0.29) % vs (37.30±1.44) % , P<0.0001]. Moreover, mCD19 CAR-T cells were distributed in high proportions in the peripheral blood, spleen, and bone marrow[ (2.90±1.12) % , (4.96±0.80) % , (13.55±1.56) % ]. Conclusion: This study demonstrated an optimized activation system and the optimal infection time of CD3(+) T cells. Furthermore, stable constructed mCD19 CAR-T cells showed a remarkable killing ability in vitro and in vivo.
Collapse
|