1
|
Zhang D, Xiang KF, Xiang C, Wu Y, Wang L. Construction of novel 7 integrin-related gene signatures in thyroid cancer construction of model based on integrin genes. Medicine (Baltimore) 2023; 102:e36412. [PMID: 38115319 PMCID: PMC10727611 DOI: 10.1097/md.0000000000036412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Advanced and metastatic THCA patients usually have a poor prognosis. Thus, this study aimed to establish a risk model to discriminate the high risk population. The expression and clinical data were obtained from TCGA database. The cluster analysis, lasso, univariate and multivariate cox analyses were used to construct risk model. K-M, ROC and DCA were applied to validate the efficiency and stability of the model. GO, KEGG, and ssGSEA analysis were performed to identify the potential mechanism of signatures. The 7-gene prognosis model was constructed, including FAM27E3, FIGN, GSTM4, BEX5, RBPMS2, PHF13, and DCSTAMP. ROC and DCA results showed our model had a better prognosis prediction performance than other risk models. The high risk score was associated with the poor prognosis of THCA patients with different clinical characteristics. The risk score was closely related to cell cycle. Further, we found that the expressions of signatures were significantly dysregulated in THCA and associated with prognosis. These gene expressions were affected by some clinical characteristics, methylation and CNV. Some signatures played a role in drug sensitivity and pathway activation. We constructed a 7-gene signature model based on the integrin-related genes, which showed a great prognostic value in THCA.
Collapse
Affiliation(s)
- Dong Zhang
- Department of General Surgery, Kong Jiang Hosptal of Yangpu District, Shanghai, China
| | - Kai-fang Xiang
- Department of Thyroid and Breast Surgery, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wu
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ling Wang
- Department of Thyroid and Breast Surgery, The First People’s Hospital of Jiangxia, Wuhan, China
| |
Collapse
|
2
|
Lee JE, Park J, Kim EJ, Ko YH, Hong SA, Yang SH, Ahn YH. Noggin contributes to brain metastatic colonization of lung cancer cells. Cancer Cell Int 2023; 23:299. [PMID: 38012621 PMCID: PMC10683317 DOI: 10.1186/s12935-023-03155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Brain metastasis is a common complication among patients with lung cancer, yet the underlying mechanisms remain unclear. In this study, we aimed to investigate the pathogenesis of brain metastasis in lung cancer. METHODS We established highly colonizing metastatic lung cancer cells, A549-M2, through multiple implantations of A549 human lung cancer cells in the carotid artery of athymic nude mice. RESULTS Compared to parental cells (M0), M2 cells demonstrated slower growth in culture plates and soft agar, as well as lower motility and higher adhesion, key characteristics of mesenchymal-epithelial transition (MET). Further analysis revealed that M2 cells exhibited decreased expression of epithelial-mesenchymal transition markers, including ZEB1 and Vimentin. M2 cells also demonstrated reduced invasiveness in co-culture systems. RNA sequencing and gene set enrichment analysis confirmed that M2 cells underwent MET. Intriguingly, depletion of Noggin, a BMP antagonist, was observed in M2 cells, and replenishment of Noggin restored suppressed migration and invasion of M2 cells. In addition, Noggin knockdown in control M0 cells promoted cell attachment and suppressed cell migration, suggesting that Noggin reduction during brain colonization causes inhibition of migration and invasion of metastatic lung cancer cells. CONCLUSIONS Our results suggest that lung cancer cells undergo MET and lose their motility and invasiveness during brain metastatic colonization, which is dependent on Noggin.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihye Park
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Eun Ju Kim
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yoon Ho Ko
- Department of Internal Medicine, Division of Oncology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, 16247, Republic of Korea.
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wang R, Li B, Huang Z, Zhao S, Chen S, Lan T, Ren S, Wu F, Tan J, Li J. Cancer-associated fibroblasts in the invasive tumour front promote the metastasis of oral squamous cell carcinoma through MFAP5 upregulation. Gene 2023:147504. [PMID: 37217152 DOI: 10.1016/j.gene.2023.147504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are widely involved in the development and progression of tumours. As a direct junction between tumour and normal host tissue, the tumour invasive front can remodel host tissue to generate a microenvironment more suitable for tumour invasion. However, whether CAFs derived from the invasive front (CAFs-F) have a greater ability to promote tumour invasion than CAFs derived from the superficial tumour (CAFs-S) is unclear. In this study, we characterized primary CAFs from different spatial locations of tumours. We demonstrated that CAFs-F had an increased ability to promote oral squamous cell carcinoma (OSCC) proliferation and invasion in vitro and significantly enhanced tumour growth in vivo compared to CAFs-S. Mechanistically, transcriptome profiling analysis revealed that the expression of MFAP5, encoding microfibril associated protein 5, was dramatically increased in CAFs-F compared to CAFs-S, which further confirmed that the MFAP5 protein level was elevated in head and neck squamous cell carcinoma (HNSCC) and that this increase was correlated with poor survival. Genetic ablation of MFAP5 impaired the preinvasive capabilities of CAFs-F. Together, our findings demonstrated that CAFs-F had a greater ability to promote tumour invasion than CAFs-S and that MFAP5 might be involved in this process.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Ruixin Wang
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Bowen Li
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Zhuoshan Huang
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Sufeng Zhao
- Nanjing Stomatological Hospital, Medical School of Nanjing University. 30 Zhongyang Road, Nanjing 210000, China
| | - Suling Chen
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Tianjun Lan
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Siqi Ren
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China
| | - Jing Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Department of General Dentistry, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University. 107 Yanjiang West Road, Guangzhou 510120, China.
| |
Collapse
|
4
|
Xu D, Wang Y, Chen Y, Zheng J. Identification of the molecular subtype and prognostic characteristics of pancreatic cancer based on CD8 + T cell-related genes. Cancer Immunol Immunother 2023; 72:647-664. [PMID: 36036290 DOI: 10.1007/s00262-022-03269-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
CD8 + T lymphocytes are immune cells that play a crucial anti-tumor role in the human body, and prognostic value of CD8 + T cell-related regulatory genes in PAAD remains elusive. Data on 179 expression profiles across 13 immune cell datasets were downloaded from the GEO database, and the expression profiles of CD8 + T cell-related genes were obtained using WGCNA. Molecular subtypes based on CD8 + T cell-related genes were constructed using the ConsensusClusterPlus algorithm. Lasso regression analysis was performed to build a 10-gene signature. GSVA was performed to explore the pathways related to these ten genes. The IMvigor210 cohort was used to explore the predictive efficacy of the signature in terms of immunotherapy response. Four hundred and forty-six CD8 + T cell-related genes were obtained. One hundred and nine genes in TCGA and GEO datasets were closely related to the prognosis of patients and were included in the next study. PAAD samples were divided into two subtypes (IC1 and IC2) according to consensus cluster analysis. These two immune subtypes were significantly different in terms of immune checkpoint genes, immune function, and drug treatment response. Additionally, the 10-gene signature constructed based on CD8 + T cell-related genes showed a stable prognostic performance in TCGA and GEO cohorts. Moreover, it served as an independent prognostic factor for patients with PAAD. Furthermore, the 10-gene signature could effectively predict the response to immunotherapy. The immunophenotyping-derived prognostic model based on CD8 T cell-related genes provides a basis for the clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Dafeng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yu Wang
- Geriatric Medicine Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yonghai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jinfang Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
5
|
Tang S, Liao K, Shi Y, Tang T, Cui B, Huang Z. Bioinformatics analysis of potential Key lncRNA-miRNA-mRNA molecules as prognostic markers and important ceRNA axes in gastric cancer. Am J Cancer Res 2022; 12:2397-2418. [PMID: 35693096 PMCID: PMC9185605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 06/15/2023] Open
Abstract
Gastric cancer (GC), the fifth most common malignancy worldwide, has an extremely poor prognosis at the advanced stage or the early stage if inadequately treated. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs all function as competing endogenous RNAs (ceRNAs) that target and regulate each other. Changes in their expression and their regulatory bioprocesses play important roles in GC. However, the roles of key RNAs and their regulatory networks remain unclear. In this study, RNA profiles were extracted from The Cancer Genome Atlas database, and R language was used to discover the differentially expressed (DE) lncRNAs, miRNAs and mRNAs in GC. Then, the DERNAs were paired by miRcode, miRDB, TargetScan and DIANA, and the ceRNA network was further constructed and visualized using Cytoscape. Moreover, a functional enrichment analysis was performed using Metascape. Afterward, the "survival" package was employed to identify candidate prognostic targets (DERNA-os) in the ceRNA network. Ultimately, the ceRNA network was analyzed to identify crucial lncRNA/miRNA/mRNA axes. Based on 374 gastric adenocarcinoma and gastric adenoma samples, 283 DEceRNAs (69 lncRNAs, 10 miRNAs, and 204 mRNAs) were identified. The 204 mRNAs were significantly enriched in some interesting functional clusters, such as the trans-synaptic signaling cluster and the protein digestion and absorption cluster. The ceRNA network consisted of 43 ceRNAs (13 lncRNAs, 2 miRNAs, and 28 mRNAs) that were related to prognosis. Among them, 2 lncRNAs (LNC00469 and AC010145.1) and 1 mRNA (PRRT4) were potential new biomarkers. In addition, according to the lncRNA/miRNA/mRNA regulatory relationships among the 43 ceRNAs, we identified four axes that might play important roles in the progression of GC and investigated the potential mechanism of the most promising axis (POU6F2-AS2/hsa-mir-137/OPCML) in promoting the proliferation and invasiveness of GC.
Collapse
Affiliation(s)
- Siqi Tang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical UniversityDongguan 523808, Guangdong, China
- The Second School of Clinical Medicine, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Keyong Liao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical UniversityDongguan 523808, Guangdong, China
- The Second School of Clinical Medicine, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Yongpeng Shi
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical UniversityDongguan 523808, Guangdong, China
- The Second School of Clinical Medicine, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Tingting Tang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Beibei Cui
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical UniversityDongguan 523808, Guangdong, China
- Marine Medical Research Institute of Guangdong ZhanjiangZhanjiang 524023, Guangdong China
| |
Collapse
|