1
|
You Y, Du Z, Tian Z, Li S, Yu F, Xiao M, He Y, Wang Y. Tumor-associated macrophages drive heterogenetic CD10 High cancer stem cells to implement tumor-associated neutrophils reprogramming in oral squamous cell carcinoma. Int J Biol Sci 2025; 21:1110-1126. [PMID: 39897030 PMCID: PMC11781160 DOI: 10.7150/ijbs.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) widely participate in the malignant progression in cancer. Previously, we have demonstrated that M1-like TAMs cascaded a stem-like phenotype of oral squamous cell carcinoma (OSCC). Yet, the underlying mechanisms still need to be demonstrated for the regulation of TAMs on cancer stem cells (CSCs) in OSCC. In this study, we investigated a group of CSCs with increased expression of cluster differentiation 10 (CD10), which acted as a mediator in the interaction network between TAMs and tumor-associated neutrophils (TANs) in OSCC. The results showed a significant association between TAMs infiltrations and increased expression of CD10 among all the CSCs-related molecules in OSCC. Then, we validated that OSCC cells with high CD10 expression possessed increased CSCs characteristics. TAMs could drive the heterogenetic CD10High CSCs by activating the IL6/STAT3/CD10 pathway. Furthermore, CD10High CSCs could recruit and reprogram tumor-associated neutrophils (TANs) in an immunosuppressive state by secreting S100A8/A9 in OSCC. These finding indicated that CD10High CSCs played great roles in signaling crosstalk between TAMs and TANs in OSCC, by which infiltrated TAMs drive CD 10High CSCs to recruit and reprogram TANs in an immunosuppressive state. Herein, we managed to demonstrate that TAMs could directly regulate a heterogenetic cluster of CSCs with high CD10 expression, and CD10High CSCs could recruit and reprogram TANs in OSCC. The novel crosstalk among OSCC-TAMs-CD10High CSCs-TANs might bring new prospects for improving the treatment strategies for OSCC patients.
Collapse
Affiliation(s)
- Yuanhe You
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhong Du
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhuowei Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shunshun Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Fan Yu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Meng Xiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yue He
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yanan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
2
|
Liu P, Wang Y, Li X, Liu Z, Sun Y, Liu H, Shao Z, Jiang E, Zhou X, Shang Z. Enhanced lipid biosynthesis in oral squamous cell carcinoma cancer-associated fibroblasts contributes to tumor progression: Role of IL8/AKT/p-ACLY axis. Cancer Sci 2024; 115:1433-1445. [PMID: 38494608 PMCID: PMC11093202 DOI: 10.1111/cas.16111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/19/2024] Open
Abstract
Lipid metabolic reprogramming of tumor cells has been proven to play a critical role in tumor initiation and development. However, lipid metabolism in cancer-associated fibroblasts (CAFs) has rarely been studied, particularly in CAFs of oral squamous cell carcinoma (OSCC). Additionally, the molecular mechanism by which tumor cells regulate lipid metabolism in fibroblasts is unclear. In this study, we found that phosphorylated ATP citrate lyase (p-ACLY), a key lipid metabolic enzyme, was upregulated in OSCC CAFs. Compared to paracancerous normal fibroblasts, CAFs showed enhanced lipid synthesis, such as elevated cytosolic acetyl-CoA level and accumulation of lipid droplets. Conversely, reduction of p-ACLY level blocked this biological process. In addition, blocking lipid synthesis in CAFs or inhibiting fatty acid uptake by OSCC cells reduced the promotive effects of CAFs on OSCC cell proliferation, invasion, and migration. These findings suggested that CAFs are one of lipid sources required for OSCC progression. Mechanistically, AKT signaling activation was involved in the upregulation of p-ACLY level and lipid synthesis in CAFs. Interleukin-8 (IL8), an exocrine cytokine of OSCC cells, could activate AKT and then phosphorylate ACLY in fibroblasts. This study suggested that the IL8/AKT/p-ACLY axis could be considered as a potential target for OSCC treatment.
Collapse
Affiliation(s)
- Pan Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Yue Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xiang Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhenan Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Yunqing Sun
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Hanzhe Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhe Shao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Head and Neck Oncology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Erhui Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Head and Neck Oncology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xiaocheng Zhou
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral and Maxillofacial Surgery, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Zhengjun Shang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
3
|
Wang S, Xiao Y, An X, Luo L, Gong K, Yu D. A comprehensive review of the literature on CD10: its function, clinical application, and prospects. Front Pharmacol 2024; 15:1336310. [PMID: 38389922 PMCID: PMC10881666 DOI: 10.3389/fphar.2024.1336310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.
Collapse
Affiliation(s)
- Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Yao S, Xiao H, Wei C, Chen S. ANKRD2 expression combined with TNFRSF19 expression for evaluating the prognosis of oral squamous cell carcinoma patients. Heliyon 2024; 10:e24091. [PMID: 38234906 PMCID: PMC10792581 DOI: 10.1016/j.heliyon.2024.e24091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Objective As an important chemotherapy drug, cisplatin has been widely used in the treatment of many cancers. However, many patients, including oral squamous cell carcinoma (OSCC) patients, experience unacceptable outcomes from cisplatin treatment. Thus, we devised a risk model for predicting the sensitivity of OSCC patients to cisplatin treatment, to provide a reference for clinical practice. Methods CAL-27 and SCC-9 cell lines treated or not with cisplatin and data from The Cancer Genome Atlas (TCGA) were screened for simultaneously and significantly differentially expressed genes. Next, we built a risk model for predicting cisplatin sensitivity in OSCC patients. Reverse transcription-polymerase chain reaction (RT-PCR), pathological samples and clinical data were used to examine the reliability of the model. Results ANKRD2 and TNFRSF19 were differentially expressed between the OSCC metastasis cell line HSC-3 treated and not treated with cisplatin, as well as between the OSCC cell line SCC-25 and the cell line SCC25-DDP, which has cisplatin chemoresistance. We found that the expression of ANKRD2 and TNFRSF19 had a significant influence on the prognosis of OSCC patients. The risk model that combined ANKRD2 and TNFRSF19 to predict sensitivity to cisplatin in OSCC patients was confirmed by analysing the pathological samples and follow-up information of clinical patients. Conclusions The expression of ANKRD2 and TNFRSF19 is associated with cisplatin sensitivity and prognosis in patients with OSCC. The survival outcome of patients with oral squamous cell carcinoma (OSCC) was found to be significantly worse in those with high expression of ANKRD2 combined with low expression of TNFRSF19. ANKRD2 and TNFRSF19 may be targets for cisplatin sensitivity prediction in OSCC patients. These findings may provide novel strategies for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Shucong Yao
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongwei Xiao
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Changji Wei
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shisheng Chen
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
5
|
Pisamai S, Edwards SW, Cheng CW, Chaivichit P, Sooksiri M, Yanakam S, Maneewong S, Suriyaphol G. Tissue transcriptome profiling and pathway analyses revealed novel potential biomarkers in the tumor progression of canine oral melanoma. Res Vet Sci 2023; 165:105036. [PMID: 37856944 DOI: 10.1016/j.rvsc.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Canine oral melanoma (COM) is an aggressive oral malignancy in dogs, mostly with metastasis. However, the understanding of total gene expression of oral melanoma (OM) at different clinical stages has been limited. The objective of this study was to identify novel mRNA biomarkers of early-stage OM (EOM) and late-stage OM (LOM). Transcriptome sequencing of 3 EOM, 5 LOM and 4 normal gingival tissues (controls) was performed. Selected transcriptome results were validated by quantitative reverse transcription-PCR (qRT-PCR) using 12 LOM and 10 controls. We found 534 differentially expressed in EOM compared with controls, whereas 696 genes in LOM were differentially expressed compared with controls (P < 0.05). Moreover, 27 genes were differentially expressed in LOM compared with EOM (P < 0.05). The genes expressed in COM were involved in the molecular mechanism of cancer and melanocyte development pathways, promoting melanoma progression. qRT-PCR confirmed an increased expression of genes encoding an important protein in chemotherapy resistance (dopachrome tautomerase, DCT) and tumor progression (forkhead box M1, FOXM1), and decreased expression of a tumor suppression gene (N-myc downstream-regulated gene 2, NDRG2) in LOM, concordant with transcriptome results. In conclusion, this study revealed the comprehensive transcriptome from COM tissues, and increased DCT and FOXM1 and decreased NDRG2 gene expression indicated the potential candidate biomarkers in COM progression.
Collapse
Affiliation(s)
- Sirinun Pisamai
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Phannita Chaivichit
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mokhapoom Sooksiri
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sujittra Yanakam
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sattabongkoch Maneewong
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Gunnaporn Suriyaphol
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Dorna D, Paluszczak J. Targeting cancer stem cells as a strategy for reducing chemotherapy resistance in head and neck cancers. J Cancer Res Clin Oncol 2023; 149:13417-13435. [PMID: 37453969 PMCID: PMC10587253 DOI: 10.1007/s00432-023-05136-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Resistance to chemotherapy and radiotherapy is the primary cause of a poor prognosis in oncological patients. Researchers identified many possible mechanisms involved in gaining a therapy-resistant phenotype by cancer cells, including alterations in intracellular drug accumulation, detoxification, and enhanced DNA damage repair. All these features are characteristic of stem cells, making them the major culprit of chemoresistance. This paper reviews the most recent evidence regarding the association between the stemness phenotype and chemoresistance in head and neck cancers. It also investigates the impact of pharmacologically targeting cancer stem cell populations in this subset of malignancies. METHODS This narrative review was prepared based on the search of the PubMed database for relevant papers. RESULTS Head and neck cancer cells belonging to the stem cell population are distinguished by the high expression of certain surface proteins (e.g., CD10, CD44, CD133), pluripotency-related transcription factors (SOX2, OCT4, NANOG), and increased activity of aldehyde dehydrogenase (ALDH). Chemotherapy itself increases the percentage of stem-like cells. Importantly, the intratumor heterogeneity of stem cell subpopulations reflects cell plasticity which has great importance for chemoresistance induction. CONCLUSIONS Evidence points to the advantage of combining classical chemotherapeutics with stemness modulators thanks to the joint targeting of the bulk of proliferating tumor cells and chemoresistant cancer stem cells, which could cause recurrence.
Collapse
Affiliation(s)
- Dawid Dorna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Ul. Święcickiego 4, 60-781 Poznan, Poland
| |
Collapse
|
7
|
Qing B, Wang S, Du Y, Liu C, Li W. Crosstalk between endoplasmic reticulum stress and multidrug-resistant cancers: hope or frustration. Front Pharmacol 2023; 14:1273987. [PMID: 37790807 PMCID: PMC10544988 DOI: 10.3389/fphar.2023.1273987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) is a kind of cell response for coping with hypoxia and other stresses. Pieces of evidence show that continuous stress can promote the occurrence, development, and drug resistance of tumors through the unfolded protein response. Therefore, the abnormal ac-tivation of ERS and its downstream signaling pathways not only can regulate tumor growth and metastasis but also profoundly affect the efficacy of antitumor therapy. Therefore, revealing the molecular mechanism of ERS may be expected to solve the problem of tumor multidrug resistance (MDR) and become a novel strategy for the treatment of refractory and recurrent tumors. This re-view summarized the mechanism of ERS and tumor MDR, reviewed the relationship between ERS and tumor MDR, introduced the research status of tumor tissue and ERS, and previewed the prospect of targeting ERS to improve the therapeutic effect of tumor MDR. This article aims to provide researchers and clinicians with new ideas and inspiration for basic antitumor treatment.
Collapse
Affiliation(s)
- Bowen Qing
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Song Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingan Du
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Can Liu
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| | - Wei Li
- First Affiliated Hospital of Hunan Normal University, Department of Hematology, Hunan Provincial People’s Hospital, Changsha, China
| |
Collapse
|
8
|
Biswal S, Panda M, Sahoo RK, Tripathi SK, Biswal BK. Tumour microenvironment and aberrant signaling pathways in cisplatin resistance and strategies to overcome in oral cancer. Arch Oral Biol 2023; 151:105697. [PMID: 37079976 DOI: 10.1016/j.archoralbio.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Oral cancer is the sixteenth most prevalent cancer in the world and the third-most in India. Despite of several treatment modalities, the cure rate of oral cancer is still low due to drug resistance mechanisms, which are caused by many reasons. It is necessary to improve the existing treatment strategies and discover neoteric therapy to kill cancer cells, which will give oral cancer's cure rate more success. So this review aims to delineate the molecular mechanisms behind cisplatin resistance, specifically the role of the tumor microenvironment, extracellular vesicles, and altered signaling pathways and its overcoming strategies in oral cancer. DESIGN This review was designed by searching words like cancer, oral cancer, cisplatin-resistance, tumor microenvironment, aberrant signalings, and extracellular vesicles, overcoming strategies for cisplatin resistance in databases like PubMed, Google Scholar, web science, and Scopus. Data available in this review is from 2017 to 2021. RESULTS After searching too much data, we found these 98 data appropriate for our review. From these data, we found that tumor microenvironment, extracellular vesicles, and altered signaling pathways like PI3K/AKT, EGFR, NOTCH, Ras, PTEN, Nf-κβ, and Wnt signaling have a crucial role in resistance development towards cisplatin in oral cancer. CONCLUSIONS Lastly, this review explores the alternative strategies to overcome cisplatin resistance likely, the combination therapy and targeted therapy by combining more than one chemotherapeutic drug or inhibitors of signaling pathways and also by using nanoparticle loaded drugs that will reduce the drug efflux, which gives new treatment strategies.
Collapse
Affiliation(s)
- Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Rajeev K Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
9
|
Fetal bovine serum, an important factor affecting the reproducibility of cell experiments. Sci Rep 2023; 13:1942. [PMID: 36732616 PMCID: PMC9894865 DOI: 10.1038/s41598-023-29060-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Fetal bovine serum (FBS) is a natural medium used in cell cultures containing the large amount of nutrients necessary for cell growth and is often used for in vitro cultures of animal cells. Although FBS plays a vital role in cell cultures, there are small molecules contained within FBS that remain unidentified, and their effects on cultured cells is poorly understood. Here, we report that different brands of FBS have varying influences on the background expression of IL-8, not TNFα and IL1β in epithelial cells. The endogenous small molecules in FBS and ERK pathways may contribute to these effects. In addition, FBS form the IL-8 stimulation and IL-8 non-responsive groups have different metabolome profiles. Overall, our study suggests that metabolites in FBS should be included in the quantitative considerations when conducting cell experiments, especially immune-related experiments, to improve the repeatability of experimental results in scientific papers; IL-8 could thus be an important factor in selecting FBS.
Collapse
|
10
|
Alhamed AS, Alqinyah M, Alsufayan MA, Alhaydan IA, Alassmrry YA, Alnefaie HO, Algahtani MM, Alghaith AF, Alhamami HN, Albogami AM, Alhazzani K, AZ A. Blockade of store-operated calcium entry sensitizes breast cancer cells to cisplatin therapy via modulating inflammatory response. Saudi Pharm J 2023; 31:245-254. [PMID: 36942275 PMCID: PMC10023550 DOI: 10.1016/j.jsps.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Store-operated calcium entry (SOCE) is an important pathway for calcium signaling that regulates calcium influx across the plasma membrane upon the depletion of calcium stores in the endoplasmic reticulum. SOCE participates in regulating a number of physiological processes including cell proliferation and migration while SOCE dysregulation has been linked with pathophysiological conditions such as inflammation and cancer. The crosslink between cancer and inflammation has been well-established where abundant evidence demonstrate that inflammation plays a role in cancer pathophysiology and the response of cancer cells to chemotherapeutic agents including cisplatin. Indeed, the efficacy of cisplatin against cancer cells is reduced by inflammation. Interestingly, it was shown that SOCE enhances inflammatory signaling in immune cells. Therefore, the main objectives of this study are to examine the impact of SOCE inhibition on the cisplatin sensitivity of breast cancer cells and to explore its related mechanism in modulating the inflammatory response in breast cancer cells. Our findings showed that SOCE inhibitor (BTP2) enhanced cisplatin cytotoxicity against resistant breast cancer cells via inhibition of cell proliferation and migration as well as induction of apoptosis. We also found an upregulation in the gene expression of two major components of SOCE, STIM1 and ORAI1, in cisplatin-resistant breast cancer cells compared to cisplatin-sensitive breast cancer cells. In addition, cisplatin treatment increased the gene expression of STIM1 and ORAI1 in cisplatin-resistant breast cancer cells. Finally, this study also demonstrated that cisplatin therapy caused an increase in the gene expression of inflammatory mediators COX2, IL-8, and TNF-α as well as COX2 protein and upon SOCE inhibition using BTP2, the effect of cisplatin on the inflammatory mediators was reversed. Altogether, this study has proven the pivotal role of SOCE in cisplatin resistance of breast cancer cells and showed the importance of targeting this pathway in improving breast cancer therapy.
Collapse
Affiliation(s)
- Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding author.
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musab A. Alsufayan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Alhaydan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A. Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O. Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad M. Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adel F. Alghaith
- Department of pharmaceutics, College of pharmacy, king Saud university, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Albogami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanazi AZ
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|