1
|
Zhang JZ, Zhang L, Ding X, Wu M, Zhang DJ, Wu Y, Liu M, Li CC, Yi Z, Qiu WW. Design, synthesis and biological evaluation of bisnoralcohol derivatives as novel IRF4 inhibitors for the treatment of multiple myeloma. Eur J Med Chem 2025; 285:117240. [PMID: 39788064 DOI: 10.1016/j.ejmech.2025.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Interferon regulatory factor 4 (IRF4) is specifically overexpressed in multiple myeloma (MM) and mediates MM progression and survival, making it an emerging target for MM treatment. However, no chemical entity with a defined structure capable of directly binding to and inhibiting IRF4 has been reported. We screened our small library of steroid analogs and identified bisnoralcohol (BA) derivative 18 as a novel hit compound capable of inhibiting IRF4, with an IC50 of 13.46 μM. Based on 18, a series of BA derivatives was synthesized and evaluated for their inhibitory effects on IRF4 and antiproliferative activities against MM cell lines. Among these compounds, 41 (SH514) exhibited the highest potency, with an IC50 value of 2.63 μM for inhibiting IRF4, and IC50 values of 0.08 μM and 0.11 μM for inhibiting the proliferation of IRF4-high-expressing NCI-H929 and MM.1R MM cells, respectively. SH514 can bind to the IRF4-DBD domain with a KD of 1.28 μM. SH514 selectively and potently inhibits IRF4-high-expressing MM cells over IRF4-low-expressing MM cells. Mechanistic studies demonstrated that SH514 suppresses the downstream genes of IRF4, including CCNC, CANX, E2F5, CMYC, HK2, and Blimp1, and inhibited the expression of cell cycle-related proteins CDC2, Cyclin B1, Cyclin D1, Cyclin E1, and CMYC in MM cells. In vivo, SH514 effectively inhibited the proliferation of MM tumors, showing much better antitumor efficacy than the clinical drug lenalidomide, and exhibited no significant toxicity. Thus, these IRF4 inhibitors could serve as promising leads for the development of novel anti-multiple myeloma agents.
Collapse
Affiliation(s)
- Jing-Zan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Zhang
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Xin Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Min Wu
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - De-Jie Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yujie Wu
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Mingyao Liu
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai, 200241, China
| | - Chen-Chen Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Zhengfang Yi
- East China Normal University, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, 500 Dong Chuan Rd, Shanghai, 200241, China; Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China.
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Zhou Z, Chen X, Wang H, Ding L, Wang M, Li G, Xia L. WTAP-dependent N6-methyladenosine methylation of lncRNA TEX41 promotes renal cell carcinoma progression. Sci Rep 2024; 14:24742. [PMID: 39433619 PMCID: PMC11494115 DOI: 10.1038/s41598-024-76326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
The methyltransferase Wilms' tumor 1-associated protein (WTAP) has been reported to be dysregulated in various tumors. However, its role in renal cell carcinoma (RCC) remains elusive. Here, we explored whether WTAP was upregulated in RCC specimens compared to normal tissues. Functionally, WTAP promoted RCC cell proliferation and metastasis in vivo and in vitro. Mechanistically, WTAP act as an N6-methyladenosine transferase to regulate the m6A modification of long noncoding RNA TEX41. Then, the upregulated m6A modification destabilized TEX41 in a YTHDF2-dependent manner. Furthermore, TEX41 interacted with the SUZ12 protein and increased the histone methyltransferase activity of SUZ12, resulting in HDAC1 silencing. Totally, our study demonstrated the oncogenic the role of WTAP/TEX41/SUZ12/HDAC1 axis in RCC progression.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Ye Z, Huang N, Fu Y, Tian R, Wang L, Huang W. Tumor purity-related genes for predicting the prognosis and drug sensitivity of DLBCL patients. eLife 2024; 13:RP92841. [PMID: 38980810 PMCID: PMC11233133 DOI: 10.7554/elife.92841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is the predominant type of malignant B-cell lymphoma. Although various treatments have been developed, the limited efficacy calls for more and further exploration of its characteristics. Methods Datasets from the Gene Expression Omnibus (GEO) database were used for identifying the tumor purity of DLBCL. Survival analysis was employed for analyzing the prognosis of DLBCL patients. Immunohistochemistry was conducted to detect the important factors that influenced the prognosis. Drug-sensitive prediction was performed to evaluate the value of the model. Results VCAN, CD3G, and C1QB were identified as three key genes that impacted the outcome of DLBCL patients both in GEO datasets and samples from our center. Among them, VCAN and CD3G+ T cells were correlated with favorable prognosis, and C1QB was correlated with worse prognosis. The ratio of CD68 + macrophages and CD8 + T cells was associated with better prognosis. In addition, CD3G+T cells ratio was significantly correlated with CD68 + macrophages, CD4 + T cells, and CD8 +T cells ratio, indicating it could play an important role in the anti-tumor immunity in DLBCL. The riskScore model constructed based on the RNASeq data of VCAN, C1QB, and CD3G work well in predicting the prognosis and drug sensitivity. Conclusions VCAN, CD3G, and C1QB were three key genes that influenced the tumor purity of DLBCL, and could also exert certain impact on drug sensitivity and prognosis of DLBCL patients. Funding This work is supported by the Shenzhen High-level Hospital Construction Fund and CAMS Innovation Fund for Medical Sciences (CIFMS) (2022-I2M-C&T-B-062).
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/immunology
- Prognosis
- Female
- Male
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Middle Aged
- Survival Analysis
Collapse
Affiliation(s)
- Zhenbang Ye
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongliang Fu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongle Tian
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
4
|
Kumar A, Yadav RP, Chatterjee S, Das M, Pal DK. Integration of bioinformatics analysis to identify possible hub genes and important pathways associated with clear cell renal cell carcinoma. Urologia 2024; 91:261-269. [PMID: 38159064 DOI: 10.1177/03915603231220435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
INTRODUCTION One of the most fatal urological malignancies is clear cell renal cell carcinoma (ccRCC), yet little is known about its pathophysiology or prognosis. This study is aimed at obtaining some novel biomarkers with diagnostic and prognostic meaning and may find out potential therapeutic targets for ccRCC. MATERIAL AND METHODS Using three publically accessible ccRCC gene expression profiles acquired from the Gene Expression Omnibus database, differentially expressed genes (DEG) were discovered and function enrichment analyses were carried out. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted by using the DAVID tool and a protein-protein interaction (PPI) network was constructed and visualized by Cytoscape. Then we identified 10 hub genes using the cytohubba plugin of Cytoscape based on degree score. The mRNA and protein expression of hub genes was analyzed by GEPIA and Human Protein Atlas (HPA) database. Then, prognosis analysis of hub genes was conducted using GEPIA 3.0 which consists of data from The Cancer Genome Atlas (TCGA). RESULTS We discovered 293 DEG which is highly enriched in several biological processes connected to immune-regulation and pathways linked to tumors, including HIF-1, PI3K-AKT, and metabolic pathways. In particular, C1QA, C1QB, FCER1G, and TYROBP were related to advanced clinical stage, high pathological grade, and poor survival in patients with ccRCC. CONCLUSIONS Further molecular biological studies are required to confirm the role of the putative biomarkers in human ccRCC. Our work highlighted the hub genes and pathways involved in the progression of ccRCC.
Collapse
Affiliation(s)
- Anshu Kumar
- Department of Urology, West Bengal Unversity of Health Sciences, Kolkata, India
| | - Ravi Prakash Yadav
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Dilip Kumar Pal
- Department of Urology, West Bengal Unversity of Health Sciences, Kolkata, India
| |
Collapse
|
5
|
Li J, Chen G, Luo Y, Xu J, He J. The molecular subtypes and clinical prognosis characteristic of tertiary lymphoid structures-related gene of cutaneous melanoma. Sci Rep 2023; 13:23097. [PMID: 38155221 PMCID: PMC10754817 DOI: 10.1038/s41598-023-50327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Despite the remarkable efficacy of PD-1-associated immune checkpoint inhibitors in treating cutaneous melanoma (CM), the inconsistency in the expression of PD-1 and its ligand PD-L1, and resulting variability in the effectiveness of immunotherapy, present significant challenges for clinical application. Therefore, further research is necessary to identify tumor-related biomarkers that can predict the prognosis of immunotherapy. Tertiary lymphoid structures (TLSs) have been recognized as a crucial factor in predicting the response of immune checkpoint inhibitors in solid tumors, including CM. However, the study of TLSs in CM is not yet comprehensive. Gene expression profiles have been shown to correlate with CM risk stratification and patient outcomes. In this study, we identified TLS-related genes that can be used for prognostic purposes and developed a corresponding risk model. The impact of TLS-related genes on clinicopathological characteristics, immune infiltration and drug susceptibility was also explored. Our biological function enrichment analysis provided preliminary evidence of related signaling pathways. Our findings provide a new perspective on risk stratification and individualized precision therapy for CM.
Collapse
Affiliation(s)
- Juan Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
- Chonging College of Traditional Chinese Medicine, Bishan District, 61 Puguoba Road, Bicheng Street, Chongqing, 402760, People's Republic of China
| | - Gang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Yang Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Jin Xu
- Chongqing Academy of Chinese Materia Medica, Chongqing, People's Republic of China
| | - Jun He
- Chonging College of Traditional Chinese Medicine, Bishan District, 61 Puguoba Road, Bicheng Street, Chongqing, 402760, People's Republic of China.
| |
Collapse
|
6
|
Li C, Liu J, Zhang C, Cao L, Zou F, Zhang Z. Dihydroquercetin (DHQ) ameliorates LPS-induced acute lung injury by regulating macrophage M2 polarization through IRF4/miR-132-3p/FBXW7 axis. Pulm Pharmacol Ther 2023; 83:102249. [PMID: 37648017 DOI: 10.1016/j.pupt.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a common complication of sepsis. Dihydroquercetin (DHQ) has been found to attenuate lipopolysaccharide (LPS)-induced inflammation. However, the effect of DHQ on LPS-challenged ALI remains unclear. METHODS Pulmonary HE and TUNEL staining and lung wet/dry ratio were detected in LPS-treated Balb/c mice. IL-1β, IL-6 and TNF-α levels were determined utilizing ELISA assay. RAW264.7 cell apoptosis and macrophage markers (CD86, CD206) were tested using flow cytometry. TC-1 viability was analyzed by MTT assay. Western blot measured protein expression of macrophage markers. Interactions of miR-132-3p, IRF4 and FBXW7 were explored utilizing ChIP, RNA pull-down and dual luciferase reporter assays. RESULTS DHQ alleviated histopathological change, pulmonary edema and apoptosis in LPS-treated mice. DHQ affected LPS-induced M2 macrophage polarization and TC-1 cell injury-related indicators, such as decreased cell activity, decreased LDH levels, and increased apoptosis. LPS inhibited IRF4 and miR-132-3p expression, activated Notch pathway and increased FBXW7 level, which were overturned by DHQ. IRF4 transcriptionally activated miR-132-3p expression. FBXW7 was a downstream target of miR-132-3p. CONCLUSION DHQ alleviated LPS-induced lung injury through promoting macrophage M2 polarization via IRF4/miR-132-3p/FBXW7 axis, which provides a new therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Changhong Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Liang Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Fang Zou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China
| | - Zhihua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, PR China.
| |
Collapse
|
7
|
Pan M, Wang Y, Wang Z, Shao C, Feng Y, Ding P, Duan H, Ren X, Duan W, Ma Z, Yan X. Identification of the pyroptosis-related gene signature and risk score model for esophageal squamous cell carcinoma. Aging (Albany NY) 2023; 15:3094-3106. [PMID: 37071001 DOI: 10.18632/aging.204661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
Advanced esophageal squamous cell carcinoma (ESCC) still has a dismal prognostic outcome. However, the current approaches are unable to evaluate patient survival. Pyroptosis represents a novel programmed cell death type which widely investigated in various disorders and can influence tumor growth, migration, and invasion. Furthermore, few existing studies have used pyroptosis-related genes (PRGs) to construct a model for predicting ESCC survival. Therefore, the present study utilized bioinformatics approaches for analyzing ESCC patient data obtained from the TCGA database to construct the prognostic risk model and applied it to the GSE53625 dataset for validation. There were 12 differentially expressed PRGs in healthy and ESCC tissue samples, among which eight were selected through univariate and LASSO cox regression for constructing the prognostic risk model. According to K-M and ROC curve analyses, our eight-gene model might be useful in predicting ESCC prognostic outcomes. Based on the cell validation analysis, C2, CD14, RTP4, FCER3A, and SLC7A7 were expressed higher in KYSE410 and KYSE510 than in normal cells (HET-1A). Hence, ESCC patient prognostic outcomes can be assessed by our PRGs-based risk model. Further, these PRGs may also serve as therapeutic targets.
Collapse
Affiliation(s)
- Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Yingtong Feng
- Department of Cardiothoracic Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University/The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi’an 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, China
| |
Collapse
|
8
|
Li R, Lin Y, Hu F, Liao Y, Tang J, Shen Y, Li H, Guo J, Xie L. LncRNA TEX41 regulates autophagy by increasing Runx2 expression in lung adenocarcinoma bone metastasis. Am J Transl Res 2023; 15:949-966. [PMID: 36915748 PMCID: PMC10006796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To investigate the mechanism underlying the role of TEX41 in lung adenocarcinoma (LUAD) bone metastasis (BM). METHODS We analyzed the biological functions and molecular mechanisms of TEX41 using bioinformatics. TEX41 and Runx2 expressions were measured in clinical tissue samples and cell lines by quantitative PCR. The effects of TEX41 on LUAD cell proliferation, migration, invasion and metastasis as well as its mechanism of action were investigated. Fluorescence in-situ hybridization (FISH) was performed to determine TEX41 and Runx2 colocalization. Subcutaneous tumor growth and BM were evaluated in nude mice by X-ray and hematoxylin and eosin (HE) staining. RESULTS TEX41 was dramatically increased in LUAD BM tissue, indicating a poorer prognosis in patients with LUAD and BM. TEX41 knockdown suppressed the migration and metastasis of LUAD cells, whereas TEX41 overexpression promoted these processes. Data from X-ray and HE staining showed that TEX41 supported the BM in LUAD. TEX41 overexpression induced autophagy in LUAD cells, as demonstrated by changes in autophagy markers. Results of FISH showed that TEX41 and Runx2 colocalized in the nucleus, and Runx2 expression was regulated by TEX41. The effects of TEX41 on LUAD cell migration, invasion, metastasis and autophagy were counteracted by Runx2 inhibition. Moreover, the role of TEX41 in the metastasis was partially dependent on autophagy, and phosphoinositide 3-kinase (PI3K)-AKT might be the major signaling pathway involved in TEX41-regulated autophagy. CONCLUSION TEX41 promotes autophagy in LUAD cells by upregulating Runx2 to mediate LUAD migration, invasion and BM.
Collapse
Affiliation(s)
- Rong Li
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Yanping Lin
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Fengdi Hu
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Yedan Liao
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Jiadai Tang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Yan Shen
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Heng Li
- 2nd Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Jiangyan Guo
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| | - Lin Xie
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center Kunming, Yunnan, China
| |
Collapse
|
9
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|