1
|
Stock CNT, Chillón CJ, Hernández CL, Moro FM, Palomanes JM, Villaespesa MP, de Abia AL, Santiago ER, Martín ER, Rodríguez AC, Gutiérrez VG, Jiménez GM, Jiménez JL, Puente PH. Combination of disease burden before allogeneic transplantation and early post-transplant minimal residual disease predicts survival in patients with acute myeloid leukemia. Ann Hematol 2025:10.1007/s00277-025-06325-x. [PMID: 40278922 DOI: 10.1007/s00277-025-06325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/16/2025] [Indexed: 04/26/2025]
Abstract
The burden disease before allogeneic transplantation (HSCT) or the early post-transplant minimal residual disease (MRD) are both predictive parameters for relapse and post-HSCT survival in acute myeloid leukemia (AML). Nonetheless, the combination of both can provide more accurate information to identify high risk patients. To analyze the impact of pre-HSCT disease burden (MRD- vs. MRD + vs. active disease (AD), the early post-transplant MRD (posMRD + vs. posMRD-), and the combination of both pre- and post-HSCT disease status of the post-HSCT outcomes in AML patients. We retrospectively analyzed 173 patients with AML who underwent HSCT in a single institution, patients were classified according to pre-HSCT disease status, and post-HSCT MRD. MRD was measured by multiparameter flow cytometry using a cut-off of 0.1% for MRD+. The post-HSCT outcomes were analyzed based on the pre-transplant status, post-transplant status, and by combining both parameters. Patients with AD and MRD + before HSCT had worse 3y-event free (EFS) and overall survival (OS) than MRD- patients, due to a higher cumulative incidence of relapse (CIR). Also, patients with posMRD + had worse outcomes than posMRD- group. In the combined analysis, patient with MRD-/posMRD- had the best EFS and OS (3y-EFS 66.5%, 3y-OS 70.0%). Patients with MRD+/posMRD- have worse prognosis (3y-EFS 39.0%, 3y-OS 54.0%) and specially the group with AD/MRD- (3y-EFS 13.5%, 3y-OS 22.0%) and posMRD + regardless pre-HSCT disease status(3y-EFS 26.5%, 3y-OS 28.0%) had dismal OS and EFS. The combination of pre-HSCT disease burden and post-HSCT MRD measurements help us for identifying high-risk subgroups. Any level of pre-transplant disease (MRD+, and especially patients with active AD) is a risk factor, even when MRD- was achieved post-transplant. Patients with post-transplant MRD + also had an adverse prognosis. These should be target groups for implementing tailored pre- and post-transplant strategies to improve outcomes.
Collapse
Affiliation(s)
- Claudia Núñez-Torrón Stock
- Departamento de Hematología y Hemoterapia, Hospital Universitario Infanta Sofía, Avenida Paseo de Europa, Madrid, 34 28702, Spain.
- Universidad Alcalá de Henares, Madrid, Spain.
- Universidad Europea de Madrid, Madrid, Spain.
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
| | - Carlos Jiménez Chillón
- Departamento de Hematología y Hemoterapia, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Clara López Hernández
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Fernando Martín Moro
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Juan Marquet Palomanes
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Piris Villaespesa
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alejandro Luna de Abia
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | - Anabelle Chinea Rodríguez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Valentín García Gutiérrez
- Universidad Alcalá de Henares, Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Gemma Moreno Jiménez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier López Jiménez
- Universidad Alcalá de Henares, Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Pilar Herrera Puente
- Universidad Alcalá de Henares, Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Hematología y Hemoterapia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
2
|
Wang Y, Chang YJ, Chen J, Han M, Hu J, Hu J, Huang H, Lai Y, Liu D, Liu Q, Luo Y, Jiang EL, Jiang M, Song Y, Tang XW, Wu D, Xia LH, Xu K, Zhang X, Zhang XH, Huang X. Consensus on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation in China: 2024 update. Cancer Lett 2024; 605:217264. [PMID: 39332587 DOI: 10.1016/j.canlet.2024.217264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
The consensus in 2018 from The Chinese Society of Haematology (CSH) on the monitoring, treatment, and prevention of leukaemia relapse after allogeneic haematopoietic stem cell transplantation (HSCT) facilitated the standardization of clinical practices in China and progressive integration with the world. To integrate recent developments and further improve the consensus, a panel of experts from the CSH recently updated the following consensus: (1) integrate risk-adapted, measurable residual disease (MRD)-guided strategy on modified donor lymphocyte infusion (DLI) and interferon-α into total therapy, which was pioneered and refined by Chinese researchers; (2) provide additional evidence of the superiority of haploidentical HSCT (the dominant donor source in China) to matched HSCT for high-risk populations, especially for pre-HSCT MRD-positive patients; (3) support the rapid progress of techniques for MRD detection, such as next-generation sequencing (NGS) and leukaemia stem cell-based MRD detection; and (4) address the role of new targeted options in transplant settings. In conclusion, the establishment of a "total therapy" strategy represents a great step forward. We hope that the consensus updated by Chinese scholars will include the latest cutting-edge developments and inspire progress in post-HSCT relapse management.
Collapse
Affiliation(s)
- Yu Wang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China
| | - Ying-Jun Chang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China
| | - Jing Chen
- Shanghai Children's Medical Center, Shanghai, PR China
| | - Mingzhe Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Hematology and Blood Disease Hospital, Tianjin, PR China
| | - JianDa Hu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, PR China
| | - Jiong Hu
- Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - He Huang
- First Affiliated Hospital of Zhejiang University, Hangzhou, PR China
| | - Yongrong Lai
- The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Daihong Liu
- General Hospital of PLA(People's Liberation Army of China), Beijing, PR China
| | - Qifa Liu
- Nanfang Hospital of Southern Medical University, Guangzhou, PR China
| | - Yi Luo
- First Affiliated Hospital of Zhejiang University, Hangzhou, PR China
| | - Er-Lie Jiang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Hematology and Blood Disease Hospital, Tianjin, PR China
| | - Ming Jiang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yongping Song
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xiao-Wen Tang
- The First Affiliated Hospital of Soochow University, Soochow, PR China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Soochow, PR China
| | - Ling-Hui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Kailin Xu
- The First Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Xi Zhang
- Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China
| | - Xiaojun Huang
- Peking University People's Hospital & Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, PR China; Peking-Tsinghua Center for Life Sciences, Beijing, PR China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, PR China.
| |
Collapse
|
3
|
Mo X, Zhang W, Fu G, Chang Y, Zhang X, Xu L, Wang Y, Yan C, Shen M, Wei Q, Yan C, Huang X. Single-cell immune landscape of measurable residual disease in acute myeloid leukemia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2309-2322. [PMID: 39034351 DOI: 10.1007/s11427-024-2666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Measurable residual disease (MRD) is a powerful prognostic factor of relapse in acute myeloid leukemia (AML). We applied the single-cell RNA sequencing to bone marrow (BM) samples from patients with (n=20) and without (n=12) MRD after allogeneic hematopoietic stem cell transplantation. A comprehensive immune landscape with 184,231 cells was created. Compared with CD8+ T cells enriched in the MRD-negative group (MRD-_CD8), those enriched in the MRD-positive group (MRD+_CD8) showed lower expression levels of cytotoxicity-related genes. Three monocyte clusters (i.e., MRD+_M) and three B-cell clusters (i.e., MRD+_B) were enriched in the MRD-positive group. Conversion from an MRD-positive state to an MRD-negative state was accompanied by an increase in MRD-_CD8 clusters and vice versa. MRD-enriched cell clusters employed the macrophage migration inhibitory factor pathway to regulate MRD-_CD8 clusters. These findings revealed the characteristics of the immune cell landscape in MRD positivity, which will allow for a better understanding of the immune mechanisms for MRD conversion.
Collapse
Affiliation(s)
- Xiaodong Mo
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Guomei Fu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjun Chang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaohui Zhang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Lanping Xu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Wang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Chenhua Yan
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Mengzhu Shen
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Qiuxia Wei
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojun Huang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 100044, China.
| |
Collapse
|
4
|
Deng DX, Ma XH, Wu ZH, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Huang XJ, Zhao XS, Mo XD. Pre-transplantation levels of lysine (K)-specific methyltransferase 2A ( KMT2A) partial tandem duplications can predict relapse of acute myeloid leukemia patients following haploidentical donor hematopoietic stem cell transplantation. BLOOD SCIENCE 2024; 6:e00207. [PMID: 39328249 PMCID: PMC11427034 DOI: 10.1097/bs9.0000000000000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
We aimed to identify dynamic changes of lysine (K)-specific methyltransferase 2A partial tandem duplications (KMT2A-PTD) before and after haploidentical donor hematopoietic stem cell transplantation (HID HSCT) and explore the prognostic value of pre-transplantation levels of KMT2A-PTD in acute myeloid leukemia (AML) receiving HID HSCT. Consecutive 64 AML patients with KMT2A-PTD positivity at diagnosis receiving HID HSCT were included in this study. Patients with KMT2A-PTD ≥1% before HSCT had a slower decrease of KMT2A-PTD after HID HSCT. Patients with KMT2A-PTD ≥1% before HID HSCT had a higher cumulative incidence of relapse (36.4%, 95% confidence interval [CI]: 6.3%-66.5%) at 2 years after HSCT than those with KMT2A-PTD <1% (7.5%, 95% CI: 0.3%-14.7%, P = .010). In multivariable analysis, KMT2A-PTD ≥1% before HID HSCT was the only independent risk factor for relapse (hazard ratio [HR]: 4.90; 95% CI: 1.22-19.59; P = .025). Thus, pre-transplantation levels of KMT2A-PTD could predict relapse in AML patients following HID HSCT.
Collapse
Affiliation(s)
- Dao-Xing Deng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hang Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ze-Hua Wu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China
| |
Collapse
|
5
|
Liu J, Huang XJ. [Progress of allogeneic hematopoietic stem cell transplantation in KMT2A-rearranged acute leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:514-520. [PMID: 38964931 PMCID: PMC11270489 DOI: 10.3760/cma.j.cn121090-20231026-00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 07/06/2024]
Abstract
KMT2A (lysine methyltransferase 2A) -rearranged acute leukemia is a class of leukemia with unique biological characteristics with moderate or poor prognosis. In recent years, allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been increasingly indicated for patients with KMT2A-rearranged acute leukemia. By reviewing the clinical studies of allo-HSCT in KMT2A-rearranged acute leukemia, the efficacy of allo-HSCT in children and adults with KMT2A-rearranged acute myeloid leukemia and acute lymphoblastic leukemia was assessed, the factors affecting the prognosis of allo-HSCT were summarized, and the methods that may improve the outcomes of allo-HSCT were explored.
Collapse
Affiliation(s)
- J Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
6
|
Jiang B, Zhao Y, Luo Y, Yu J, Chen Y, Ye B, Fu H, Lai X, Liu L, Ye Y, Zheng W, Sun J, He J, Zhao Y, Wei G, Cai Z, Huang H, Shi J. Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients With Acute Myeloid Leukemia Harboring KMT2A Rearrangement and Its Prognostic Factors. Cell Transplant 2024; 33:9636897231225821. [PMID: 38270130 PMCID: PMC10812095 DOI: 10.1177/09636897231225821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
KMT2A rearrangement (KMT2A-r) in patients with acute myeloid leukemia (AML) is associated with poor outcomes; the prognostic factors after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remain unclear. We investigated 364 adults with AML who underwent allo-HSCT between April 2016 and May 2022, and 45 had KMT2A-r among them. Propensity score analysis with 1:1 matching and the nearest neighbor matching method identified 42 patients in KMT2A-r and non-KMT2A-r cohorts, respectively. The 2-year overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), and non-relapsed mortality rates of patients with KMT2A-r (n = 45) were 59.1%, 49.6%, 41.5%, and 8.9%, respectively. Using propensity score matching, the 2-year OS rate of patients with KMT2A-r (n = 42) was lower than that of those without KMT2A-r (n = 42; 56.1% vs 88.1%, P = 0.003). Among patients with KMT2A-r (n = 45), the prognostic advantage was exhibited from transplantation in first complete remission (CR1) and measurable residual disease (MRD) negative, which was reflected in OS, RFS, and CIR (P < 0.001, P < 0.001, and P = 0.002, respectively). Furthermore, patients with AF6 had poorer outcomes than those with AF9, ELL, and other KMT2A-r subtypes (P = 0.032, P = 0.001, and P = 0.001 for OS, RFS, and CIR, respectively). However, no differences were found in the OS, RFS, and CIR between patients with KMT2A-r with and without mutations (all P > 0.05). Univariate and multivariate analyses revealed that achieving CR1 MRD negative before HSCT was a protective factor for OS [hazard ratio (HR) = 0.242, P = 0.007], RFS (HR = 0.350, P = 0.036), and CIR (HR = 0.271, P = 0.021), while AF6 was a risk factor for RFS (HR = 2.985, P = 0.028) and CIR (HR = 4.675, P = 0.004). The prognosis of patients with KMT2A-r AML was poor, particularly those harboring AF6-related translocation; however, it is not associated with the presence of mutations. These patients can benefit from achieving CR1 MRD negative before HSCT.
Collapse
Affiliation(s)
- Bingqian Jiang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hematology, Wenzhou, People’s Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Huarui Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, People’s Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, People’s Republic of China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Soler G, Ouedraogo ZG, Goumy C, Lebecque B, Aspas Requena G, Ravinet A, Kanold J, Véronèse L, Tchirkov A. Optical Genome Mapping in Routine Cytogenetic Diagnosis of Acute Leukemia. Cancers (Basel) 2023; 15:cancers15072131. [PMID: 37046792 PMCID: PMC10093111 DOI: 10.3390/cancers15072131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Cytogenetic aberrations are found in 65% of adults and 75% of children with acute leukemia. Specific aberrations are used as markers for the prognostic stratification of patients. The current standard cytogenetic procedure for acute leukemias is karyotyping in combination with FISH and RT-PCR. Optical genome mapping (OGM) is a new technology providing a precise identification of chromosomal abnormalities in a single approach. In our prospective study, the results obtained using OGM and standard techniques were compared in 29 cases of acute myeloid (AML) or lymphoblastic leukemia (ALL). OGM detected 73% (53/73) of abnormalities identified by standard methods. In AML cases, two single clones and three subclones were missed by OGM, but the assignment of patients to cytogenetic risk groups was concordant in all patients. OGM identified additional abnormalities in six cases, including one cryptic structural variant of clinical interest and two subclones. In B-ALL cases, OGM correctly detected all relevant aberrations and revealed additional potentially targetable alterations. In T-ALL cases, OGM characterized a complex karyotype in one case and identified additional abnormalities in two others. In conclusion, OGM is an attractive alternative to current multiple cytogenetic testing in acute leukemia that simplifies the procedure and reduces costs.
Collapse
Affiliation(s)
- Gwendoline Soler
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
| | - Zangbéwendé Guy Ouedraogo
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Service de Biochimie et Génétique Moléculaire, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- CNRS, INSERM, iGReD, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Carole Goumy
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | | | - Gaspar Aspas Requena
- Hématologie Clinique Adulte et de Thérapie Cellulaire, CHU Estaing, 63100 Clermont-Ferrand, France
| | - Aurélie Ravinet
- Hématologie Clinique Adulte et de Thérapie Cellulaire, CHU Estaing, 63100 Clermont-Ferrand, France
| | - Justyna Kanold
- Service d'Hématologie et d'Oncologie Pédiatrique et Unité CRECHE (Centre de REcherche Clinique CHez l'Enfant), CHU Estaing, 63100 Clermont-Ferrand, France
| | - Lauren Véronèse
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Clonal Heterogeneity and Leukemic Environment in Therapy Resistance of Chronic Leukemias (CHELTER), EA7453, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Andrei Tchirkov
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, 63000 Clermont-Ferrand, France
- Clonal Heterogeneity and Leukemic Environment in Therapy Resistance of Chronic Leukemias (CHELTER), EA7453, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|