1
|
Iwadare T, Kimura T, Sugiura A, Okumura T, Wakabayashi S, Kobayashi H, Yamashita Y, Yamazaki T, Joshita S, Tanaka N, Umemura T. Thrombospondin 2 as a Predictive Biomarker for HCC in Hepatitis C Patients: A Longitudinal Study Following DAA Therapy. J Viral Hepat 2025; 32:e14025. [PMID: 39403792 PMCID: PMC11883454 DOI: 10.1111/jvh.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 02/11/2025]
Abstract
This multicentre study investigated the dynamics of thrombospondin 2 (TSP2) levels during direct-acting antiviral (DAA) therapy in hepatitis C virus (HCV) infected patients and evaluated TSP2's potential as a predictive marker for hepatocellular carcinoma (HCC). All 134 participants achieved sustained virological response at 12 weeks (SVR12) with DAA therapy, and serum TSP2 levels significantly decreased from before and after treatment (p < 0.001). During the median follow-up period of 6.0 years, HCC after DAA therapy was observed in 16 patients (11.9%). Patients with serum TSP2 High (≥ 32 ng/mL) at SVR12 had a significantly higher cumulative occurrence of HCC than did those without (26.5% vs. 7.0%, p = 0.0033). A multivariate Cox proportional hazards model identified male gender (HR 4.84, p = 0.005), HCC history (HR 4.61, p = 0.017) and TSP2 High (HR 3.93, p = 0.009) as significant independent predictors of HCC occurrence after DAA therapy. The model had a high concordance index of 0.878. Additionally, combining TSP2 High and FIB-4 High (≥ 3.538) at SVR12 yielded high specificity and negative predictive value (0.941 and 0.917, respectively) for predicting HCC. Kaplan-Meier analysis showed a higher HCC incidence in the TSP2 High + FIB-4 High group (log-rank p < 0.0001). In conclusion, TSP2 may be a promising biomarker for personalised HCC surveillance in DAA-treated hepatitis C patients.
Collapse
Affiliation(s)
- Takanobu Iwadare
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
| | - Takefumi Kimura
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
- Consultation Center for Liver DiseasesShinshu University HospitalMatsumotoNaganoJapan
| | - Ayumi Sugiura
- Department of Internal MedicineSato HospitalNakanoNaganoJapan
| | - Taiki Okumura
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
| | - Shun‐ichi Wakabayashi
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
| | - Hiroyuki Kobayashi
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
| | - Yuki Yamashita
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
- Consultation Center for Liver DiseasesShinshu University HospitalMatsumotoNaganoJapan
| | - Tomoo Yamazaki
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
- Department of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Satoru Joshita
- Department of Internal MedicineYodakubo HospitalNagawaNaganoJapan
| | - Naoki Tanaka
- Department of Global Medical Research PromotionShinshu University Graduate School of MedicineMatsumotoNaganoJapan
- International Relations OfficeShinshu University School of MedicineMatsumotoNaganoJapan
- Research Center for Social SystemsShinshu UniversityMatsumotoNaganoJapan
| | - Takeji Umemura
- Division of Gastroenterology and Hepatology, Department of MedicineShinshu University School of MedicineMatsumotoNaganoJapan
- Consultation Center for Liver DiseasesShinshu University HospitalMatsumotoNaganoJapan
| |
Collapse
|
2
|
Mohammadi MK, Mirjalili S, Ikbal MA, Xie H, Wang C. Rapid and Sensitive Detection of Thrombospondin-2 Using Nanoparticle Sensors for Cancer Screening and Prognosis. MICROMACHINES 2025; 16:354. [PMID: 40141965 PMCID: PMC11945633 DOI: 10.3390/mi16030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Thrombospondin-2 (THBS2) is a prevailing prognostic biomarker implicated in different cancer types, such as deadly colorectal, pancreas, and triple-negative breast cancers. While the current methods for cancer-relevant protein detection, such as enzyme-linked immunosorbent assay (ELISA), mass spectrometry, and immunohistochemistry, are feasible at advanced stages, they have shortcomings in sensitivity, specificity, and accessibility, particularly at low concentrations in complex biological fluids for early detection. Here, we propose and demonstrate a modular, in-solution assay design concept, Nanoparticle-Supported Rapid Electronic Detection (NasRED), as a versatile cancer screening and diagnostic platform. NasRED utilizes antibody-functionalized gold nanoparticles (AuNPs) to capture target proteins from a minute amount of sample (<10 µL) and achieve optimal performance with a short assay time by introducing active fluidic forces that act to promote biochemical reaction and accelerate signal transduction. This rapid (15 min) process serves to form AuNP clusters upon THBS2 binding and subsequently precipitate such clusters, resulting in color modulation of the test tubes that is dependent on the THBS2 concentration. Finally, a semiconductor-based, portable electronic device is used to digitize the optical signals for the sensitive detection of THBS2. High sensitivity (femtomolar level) and a large dynamic range (five orders of magnitude) are obtained to analyze THBS2 spiked in PBS, serum, whole blood, saliva, cerebrospinal fluids, and synovial fluids. High specificity is also preserved in differentiating THBS2 from other markers such as cancer antigen (CA) 19-9 and bovine serum albumin (BSA). This study highlights NasRED's potential to enhance cancer prognosis and screening by offering a cost-effective, accessible, and minimally invasive solution.
Collapse
Affiliation(s)
- Maziyar Kalateh Mohammadi
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; (M.K.M.); (S.M.); (M.A.I.)
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
| | - Seyedsina Mirjalili
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; (M.K.M.); (S.M.); (M.A.I.)
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
| | - Md Ashif Ikbal
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; (M.K.M.); (S.M.); (M.A.I.)
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
| | - Hao Xie
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Chao Wang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA; (M.K.M.); (S.M.); (M.A.I.)
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
3
|
Mota L, Zhu M, Li J, Contreras M, Aridi T, Tomeo JN, Stafford A, Mooney DJ, Pradhan-Nabzdyk L, Ferran C, LoGerfo FW, Liang P. Perivascular CLICK-gelatin delivery of thrombospondin-2 small interfering RNA decreases development of intimal hyperplasia after arterial injury. FASEB J 2024; 38:e23321. [PMID: 38031974 PMCID: PMC10726962 DOI: 10.1096/fj.202301359r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Bypass graft failure occurs in 20%-50% of coronary and lower extremity bypasses within the first-year due to intimal hyperplasia (IH). TSP-2 is a key regulatory protein that has been implicated in the development of IH following vessel injury. In this study, we developed a biodegradable CLICK-chemistry gelatin-based hydrogel to achieve sustained perivascular delivery of TSP-2 siRNA to rat carotid arteries following endothelial denudation injury. At 21 days, perivascular application of TSP-2 siRNA embedded hydrogels significantly downregulated TSP-2 gene expression, cellular proliferation, as well as other associated mediators of IH including MMP-9 and VEGF-R2, ultimately resulting in a significant decrease in IH. Our data illustrates the ability of perivascular CLICK-gelatin delivery of TSP-2 siRNA to mitigate IH following arterial injury.
Collapse
Affiliation(s)
- Lucas Mota
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Max Zhu
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Jennifer Li
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Mauricio Contreras
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Tarek Aridi
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - John N. Tomeo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Alexander Stafford
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA
| | - Leena Pradhan-Nabzdyk
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
- The Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston MA
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA
| | - Frank W. LoGerfo
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| | - Patric Liang
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston MA
| |
Collapse
|
4
|
Jalali Z, Nejad Ebrahimi S, Rezadoost H. Identifying natural products for gastric cancer treatment through pharmacophore creation, 3D QSAR, virtual screening, and molecular dynamics studies. Daru 2023; 31:243-258. [PMID: 37733194 PMCID: PMC10624797 DOI: 10.1007/s40199-023-00480-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is known as the fourth leading cause of cancer-related death and the fifth major cancer in the world, and this is a serious threat to general health all over the world. The lack of early detection markers results in a belated diagnosis, i.e. the final stages, which could be associated with the ineffectiveness of the treatment strategies, and naturally, it leads to poor prognosis. Even though a variety of treatments have been developed, there is a trend of studying traditional medicinal plants, due to the worrying side effect of drugs available in the market. METHODS In this study, pharmacophore generation and 3D-QSAR model were created using 50 compounds with anti-gastric cancer activity (with IC50 had been reported in the previous studies). RESULTS Based on three of the best pharmacophoric hypotheses, virtual screening was performed to discover the top anti-gastric cancer compounds from a database of 183,885 compounds. The selected compounds were used for molecular docking with three protein receptors 7BKG, 4F5B, and 4ZT1 to investigate the intermolecular interactions between these ligands and receptors. Finally, 21 lead compounds with the highest amount of docking score ranging from - 13.366 to -6.404 kcal/mol were selected, and then the ADME/Tox properties of these compounds were calculated. All these compounds have a fitness score above 1.8, a molecular weight of less than 500 g/mol, hydrogen bond donors up to 3, hydrogen bond acceptors up to 8.50, and logP of 1.013 to 4.174. Finally, molecular dynamic simulations for top-scoring ligand-receptor complexes were investigated. CONCLUSION These selected lead compounds have the most anti-gastric cancer effects among the 183,885 compounds in the database. Therefore, lead compounds might be considered for gastric cancer therapy in future studies.
Collapse
Affiliation(s)
- Zeinab Jalali
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran
| |
Collapse
|
5
|
Wang G, Qu F, Zhou J, Zhu B, Gao Y. Elevated THBS3 predicts poor overall survival for clear cell renal cell carcinoma and identifies LncRNA/RBP/THBS3 mRNA networks. Cell Cycle 2023; 22:316-330. [PMID: 36045611 PMCID: PMC9851198 DOI: 10.1080/15384101.2022.2117910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 01/22/2023] Open
Abstract
This study was used to assess THBS3's overall survival (OS) prognostic values in clear cell renal cell carcinoma (ccRCC) as well as to determine the LncRNA/RNA binding protein (RBP)/THBS3 interactions. Clinical data and RNA sequencing data were gathered from the TCGA dataset. Significant pathways associated with THBS3 were identified by gene set enrichment analysis (GSEA). Cox regression analyses, both univariate and multivariate, were applied to assess factors with independent prognostic abilities. We also discussed THBS3's relationship to immunity. We discovered that THBS3 expression was increased in ccRCC samples, as well as shorter OS in the TCGA dataset (P<0.05). External verification results in GSE6344, ICGC, ArrayExpress, UALCAN datasets, and qRT-PCR remained consistent (all P<0.05). Cox regression analyses, both univariate and multivariate, identified THBS3 as a factor with independent prognostic ability (both P<0.001). THBS3 expression as well as several clinicopathological variables were included in the nomogram OS prognosis prediction method as well. GSEA identified four THBS3-related signal pathways and THBS3 was revealed to be significantly associated with MSI, TMB, neoantigen, and immunity (all P<0.05). We also identified several LncRNA/RBP/THBS3 mRNA networks as potentially THBS3-related mechanisms. For THBS3-related drug sensitivities, THBS3 was negatively associated with Actinomycin D, Cobimetinib, Eribulin mesilate, Geldanamycin analog, and Vinblastine, while it was positively related to Erlotinib drug sensitivity. In addition to being an independent prognostic factor for ccRCC, THBS3 had a close connection to immunity, with identifying LncRNA/RBPs/THBS3 mRNA networks. Verifications of our findings in vivo and in vitro should be done in the future.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| | - Fangfang Qu
- Department of Anesthesiology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| | - Jincai Zhou
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu Province, China
| | - Yulong Gao
- Department of Urology, Jianhu Clinical Medical College of Yangzhou University, Yancheng, Jiangsu Province, China
| |
Collapse
|
6
|
Krüppel-Like Factor 2 Is a Gastric Cancer Suppressor and Prognostic Biomarker. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:2360149. [PMID: 36874616 PMCID: PMC9981288 DOI: 10.1155/2023/2360149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 02/25/2023]
Abstract
Gastric cancer (GC) is a common digestive tract tumor. Due to its complex pathogenesis, current diagnostic and therapeutic effects remain unsatisfactory. Studies have shown that KLF2, as a tumor suppressor, is downregulated in many human cancers, but its relationship and role with GC remain unclear. In the present study, KLF2 mRNA levels were significantly lower in GC compared to adjacent normal tissues, as analyzed by bioinformatics and RT-qPCR, and correlated with gene mutations. Tissue microarrays combined with immunohistochemical techniques showed downregulation of KLF2 protein expression in GC tissue, which was negatively correlated with patient age, T stage, and overall survival. Further functional experiments showed that knockdown of KLF2 significantly promoted the growth, proliferation, migration, and invasion of HGC-27 and AGS GC cells. In conclusion, low KLF2 expression in GC is associated with poor patient prognosis and contributes to the malignant biological behavior of GC cells. Therefore, KLF2 may serve as a prognostic biomarker and therapeutic target in GC.
Collapse
|
7
|
Zhang R, Liu F. Cancer-associated fibroblast-derived gene signatures predict radiotherapeutic survival in prostate cancer patients. J Transl Med 2022; 20:453. [PMID: 36195908 PMCID: PMC9533530 DOI: 10.1186/s12967-022-03656-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play multiple roles in regulating tumor metastasis and treatment response. Current clinical indicators are insufficient to accurately assess disease risk and radiotherapy response, emphasizing the urgent need for additional molecular prognostic markers. METHODS In order to investigate CAF-related genes associated with radiotherapy and construct prognostic CAF-related gene signatures for prostate cancer, we firstly established a radio-resistant prostate CAF cell subline (referred to as CAFR) from Mus-CAF (referred to as CAF) through fractionated irradiation using X-rays. Transcriptome sequencing for CAF and CAFR was conducted, and 2626 CAF-related differentially expressed genes (DEGs) associated with radiotherapy were identified. Human homologous genes of mouse CAF-related DEGs were then obtained. RESULTS Functional enrichment analysis revealed that these CAF-related DEGs were significantly enriched ECM- and immune-related functions and pathways. Based on GSE116918 dataset, 186 CAF-related DEGs were correlated with biochemical recurrence-free survival (BCRFS) of prostate cancer patients, 16 of which were selected to construct a BCRFS-related CAF signature, such as ACPP, THBS2, and KCTD14; 142 CAF-related DEGs were correlated with metastasis-free survival (MFS), 16 of which were used to construct a MFS-related CAF signature, such as HOPX, TMEM132A, and ZNF467. Both Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets confirmed that the two CAF signatures accurately predicted BCRFS and MFS of prostate cancer patients. The risk scores were higher in patients with higher gleason grades and higher clinical T stages. Moreover, the BCRFS-related CAF signature was an independent prognostic factor and a nomogram consisting of BCRFS-related CAF signature and various clinical factors accurately predicted 2-, 3-, and 5-year survival time of prostate cancer patients. Furthermore, the risk score was positively correlated with multiple immune checkpoints. CONCLUSIONS Our established CAF signatures could accurately predict BCRFS and MFS in prostate cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Ran Zhang
- Laboratory of Radio-Immunology, Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Feng Liu
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|