1
|
Yousef EH, El Gayar AM, El-Magd NFA. Insights into Sorafenib resistance in hepatocellular carcinoma: Mechanisms and therapeutic aspects. Crit Rev Oncol Hematol 2025; 212:104765. [PMID: 40389183 DOI: 10.1016/j.critrevonc.2025.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025] Open
Abstract
The most prevalent primary hepatic cancer, hepatocellular carcinoma (HCC), has a bad prognosis. HCC prevalence and related deaths have increased in recent decades. Food and Drug Administration (FDA) has licensed Sorafenib as a first-line treatment for individuals with advanced HCC. Despite this, some clinical studies indicate that a significant percentage of liver cancer patients exhibit insensitivity to sorafenib. Furthermore, the overall effectiveness of sorafenib is far from adequate, and the number of patients who benefit from therapy is low. In recent years, many researchers have focused on the mechanisms underlying sorafenib resistance. Acquired resistance to sorafenib in HCC cells has been reported to be facilitated by dysregulation of signal transducer and activator of transcription 3 (STAT3) activation, angiogenesis, autophagy, hypoxia-induced pathways, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), ferroptosis, and non-coding RNAs (ncRNAs). Recent clinical trials, including comparisons of sorafenib with immune checkpoint inhibitors like tislelizumab, have shown promise in improving patient outcomes. Additionally, combination therapies targeting complementary pathways are under investigation to overcome resistance and enhance treatment efficacy. The limitation of Sorafenib's effectiveness has been partially but not completely clarified. Furthermore, while certain regimens have demonstrated positive results, more clinical trials are required to confirm them. Future research should focus on identifying predictive biomarkers for therapy response, targeting the tumor microenvironment, and exploring novel therapeutic agents and personalized medicine strategies. A deeper understanding of these mechanisms will be essential for developing more effective therapeutic approaches and improving the prognosis of patients with advanced HCC. This article discusses strategies that may be employed to enhance the success of treatment and summarizes new research on the possible pathways that lead to sorafenib resistance.
Collapse
Affiliation(s)
- Eman H Yousef
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Pharmacology and Biochemistry department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34511, Egypt.
| | - Amal M El Gayar
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nada F Abo El-Magd
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Huang C, Li Y, Zhang F, Zhang C, Ding Z. Advancements in elucidating the mechanisms of Sorafenib resistance in hepatocellular carcinoma. Int J Surg 2025; 111:2990-3005. [PMID: 39992113 DOI: 10.1097/js9.0000000000002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025]
Abstract
Primary liver cancer is a major global health challenge, of which hepatocellular carcinoma is the most common. For patients with advanced liver cancer, Sorafenib is a first-line targeted drug that occupies a dominant position in clinical applications. Sorafenib is a multi-kinase inhibitor commonly used in clinical practice, which can effectively inhibit tumor cell proliferation, promote cell apoptosis, and inhibit angiogenesis. However, the emergence of drug resistance has hindered the development of treatment programs, which is an urgent problem to be solved. Recent studies have revealed many mechanisms and influencing factors of Sorafenib resistance (such as epigenetic regulation, programmed cell death, metabolic reprogramming, and tumor microenvironment changes). This review not only summarizes the above mechanisms, but also summarizes the combined application of Sorafenib with other drugs (such as molecular targeted drugs, other anti-angiogenesis drugs, cytotoxic drugs, immunotherapy drugs, etc .). Finally, potential strategies and research directions to overcome drug resistance (such as targeting epigenetic pathways or metabolic reprogramming) are discussed to provide suggestions for future in-depth research and clinical applications.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangqian Li
- Frontiers Science Center for Disease-related Molecular Network, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengmei Zhang
- Frontiers Science Center for Disease-related Molecular Network, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Lu Y, Kim BS, Zeng J, Chen Z, Zhu M, Tang Y, Pan Y. Deep Learning-Based Drug Compounds Discovery for Gynecomastia. Biomedicines 2025; 13:262. [PMID: 40002676 PMCID: PMC11852009 DOI: 10.3390/biomedicines13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Gynecomastia, caused by an estrogen-testosterone imbalance, affects males across various age groups. With unclear mechanisms and no approved drugs, the condition underscores the need for efficient, innovative treatment strategies. Methods: This study utilized deep learning-based computational methods to discover potential drug compounds for gynecomastia. To identify genes and pathways associated with gynecomastia, initial analyses included text mining, biological process exploration, pathway enrichment and protein-protein interaction (PPI) network construction. Subsequently, drug-target interactions (DTIs) were examined to identify potential therapeutic compounds. The DeepPurpose toolkit was employed to predict interactions between these candidate drugs and gene targets, prioritizing compounds based on their predicted binding affinities. Results: Text mining identified 177 genes associated with gynecomastia. Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified critical genes and pathways, with notable involvement in signal transduction, cell proliferation and steroid hormone biosynthesis. PPI network analysis highlighted 10 crucial genes, such as IGF1, TGFB1 and AR. DTI analysis and DeepPurpose predictions identified 12 potential drugs, including conteltinib, yifenidone and vosilasarm, with high predicted binding affinities to the target genes. Conclusions: The study successfully identified potential drug compounds for gynecomastia using a deep learning-based approach. The findings highlight the effectiveness of combining text mining and artificial intelligence in drug discovery. This innovative method provides a new avenue for developing specific treatments for gynecomastia and underscores the need for further experimental validation and optimization of prediction models to support novel drug development.
Collapse
Affiliation(s)
- Yeheng Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Y.L.); (J.Z.)
| | - Byeong Seop Kim
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China;
| | - Junhao Zeng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Y.L.); (J.Z.)
| | - Zhiwei Chen
- Big Data and Artificial Intelligence Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
| | - Mengyu Zhu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Yuxi Tang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China;
| | - Yuyan Pan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (Y.L.); (J.Z.)
| |
Collapse
|
4
|
Zhao Z, Yue H, Cui X. Homotherapy for Heteropathy: A Molecular Mechanism of Poria Sini Decoction for Treatment of Liver Cancer and Chronic Heart Failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:9958258. [PMID: 38711438 PMCID: PMC11073853 DOI: 10.1155/2024/9958258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Poria sini decoction (PSD), a significant traditional Chinese herbal formula, is effective in liver cancer (LC) and chronic heart failure (CHF); however, little is known about its concurrent targeting mechanism. Methods. This study analyzed the potential molecular mechanism of PSD against the two distinct diseases using network pharmacology approaches, including multidatabase search, pharmacokinetic screening, network construction analysis, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and molecular docking to elaborate the active components, signaling pathways, and potential mechanisms of PSD in the treatment of both LC and CHF. Results. A total of 155 active components and 193 potential targets in PSD were identified. Bioinformatics analysis revealed that quercetin, isorhamnetin, and naringenin, etc. may be potential candidate agents. TNF, AKT1, and IL6, etc. could become potential therapeutic targets. TNF-α, NF-κB, PI3K-AKT, and TRP signaling pathways might play an important role in PSD against LC and CHF. Molecular docking results showed that most screened active compounds could embed itself into target proteins with a high binding affinity, and the hydrogen bonds number ≥3 indicated a more stable conformation of the compounds and target proteins. Overall, quercetin and isorhamnetin were the main active components, and TNF and AKT1 were the primary targets for PSD treatment of LC and CHF. Conclusions. This study illustrated that quercetin contained in PSD played an important role in the treatment of LC and CHF by acting on the key gene of TP53 and downregulating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Second Clinical Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Huiying Yue
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Taiyuan 030001, China
| | - Xiaohua Cui
- Department Cellar Biology and Genetics, Basic Medical College, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
5
|
Li J, Zhang L, Ge T, Liu J, Wang C, Yu Q. Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications. Drug Des Devel Ther 2024; 18:829-843. [PMID: 38524877 PMCID: PMC10959117 DOI: 10.2147/dddt.s443107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been recognized as crucial agents for treating various tumors, and one of their key targets is the intracellular site of the vascular endothelial growth factor receptor (VEGFR). While TKIs have demonstrated their effectiveness in solid tumor patients and increased life expectancy, they can also lead to adverse cardiovascular effects including hypertension, thromboembolism, cardiac ischemia, and left ventricular dysfunction. Among the TKIs, sorafenib was the first approved agent and it exerts anti-tumor effects on hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC) by inhibiting angiogenesis and tumor cell proliferation through targeting VEGFR and RAF. Unfortunately, the adverse cardiovascular effects caused by sorafenib not only affect solid tumor patients but also limit its application in curing other diseases. This review explores the mechanisms underlying sorafenib-induced cardiovascular adverse effects, including endothelial dysfunction, mitochondrial dysfunction, endoplasmic reticulum stress, dysregulated autophagy, and ferroptosis. It also discusses potential treatment strategies, such as antioxidants and renin-angiotensin system inhibitors, and highlights the association between sorafenib-induced hypertension and treatment efficacy in cancer patients. Furthermore, emerging research suggests a link between sorafenib-induced glycolysis, drug resistance, and cardiovascular toxicity, necessitating further investigation. Overall, understanding these mechanisms is crucial for optimizing sorafenib therapy and minimizing cardiovascular risks in cancer patients.
Collapse
Affiliation(s)
- Jue Li
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Lusha Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Teng Ge
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| | - Jiping Liu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Chuan Wang
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
| | - Qi Yu
- Engineering Research Center of Brain Health Industry of Chinese Medicine, Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Pharmacology of Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, People’s Republic of China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
6
|
Li R, Gong L, Sun J, Liang Z, He J, Huang J, Ning X, Song H, Li R, Zhang Q, Lin Z, Yin Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing sulfonamide moiety as novel FAK inhibitors. Bioorg Chem 2024; 144:107134. [PMID: 38237389 DOI: 10.1016/j.bioorg.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Two series of 2,4-diarylaminopyrimidine derivatives containing sulfonamide moiety were designed and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most compounds significantly inhibited the enzymatic activities of FAK, and the best compound was 7b (IC50 = 0.27 nM). A majority of aminoethyl sulfonamide derivatives could effectively inhibit the proliferation of human cancer cell lines (HCT116, A549, MDA-MB-231 and Hela) expressing high levels of FAK. Particularly, compounds 7b, 7c, and 7o exhibited more significant efficacy against all of four cancer cell lines within concentrations of 1.5 μM. Furthermore, these three compounds displayed higher selectivity of cancer cells over normal cells (SI value > 14), compared to the positive control TAE226 (SI value = 1.63). Interestingly, introduction of dithiocarbamate moiety to the aminoethyl sulfonamide derivatives can indeed improve the antiproliferative activities against A549 cells. Especially, compound 8d demonstrated most significant cytotoxicity activity against A549 cells with an IC50 value of 0.08 μM, which is 20-fold superior to parent compound 7k. Additionally, compound 7b, which display the best anti-FAK potency, can inhibit the clone formation and migration of HCT-116 cells, and cause cell cycle arrest at G2/M phase, inducing apoptosis by promoting ROS production. Overall, these results suggest that 7b is a valuable FAK inhibitor that deserves further optimization to improve its druggability.
Collapse
Affiliation(s)
- Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Jiawei Sun
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Jianan He
- MindRank AI Ltd., Kejiyuan Road, Hangzhou, Zhejiang 310000, PR China
| | - Junjie Huang
- MindRank AI Ltd., Kejiyuan Road, Hangzhou, Zhejiang 310000, PR China
| | - Xianling Ning
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Huajie Song
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
7
|
Hu HH, Wang SQ, Shang HL, Lv HF, Chen BB, Gao SG, Chen XB. Roles and inhibitors of FAK in cancer: current advances and future directions. Front Pharmacol 2024; 15:1274209. [PMID: 38410129 PMCID: PMC10895298 DOI: 10.3389/fphar.2024.1274209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that exhibits high expression in various tumors and is associated with a poor prognosis. FAK activation promotes tumor growth, invasion, metastasis, and angiogenesis via both kinase-dependent and kinase-independent pathways. Moreover, FAK is crucial for sustaining the tumor microenvironment. The inhibition of FAK impedes tumorigenesis, metastasis, and drug resistance in cancer. Therefore, developing targeted inhibitors against FAK presents a promising therapeutic strategy. To date, numerous FAK inhibitors, including IN10018, defactinib, GSK2256098, conteltinib, and APG-2449, have been developed, which have demonstrated positive anti-tumor effects in preclinical studies and are undergoing clinical trials for several types of tumors. Moreover, many novel FAK inhibitors are currently in preclinical studies to advance targeted therapy for tumors with aberrantly activated FAK. The benefits of FAK degraders, especially in terms of their scaffold function, are increasingly evident, holding promising potential for future clinical exploration and breakthroughs. This review aims to clarify FAK's role in cancer, offering a comprehensive overview of the current status and future prospects of FAK-targeted therapy and combination approaches. The goal is to provide valuable insights for advancing anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Hui-Hui Hu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Shang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Hui-Fang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Bei-Bei Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
9
|
Zhang J, Li W, Wang W, Chen Q, Xu Z, Deng M, Zhou L, He G. Dual roles of FAK in tumor angiogenesis: A review focused on pericyte FAK. Eur J Pharmacol 2023; 947:175694. [PMID: 36967077 DOI: 10.1016/j.ejphar.2023.175694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Focal adhesion kinase (FAK), also known as protein tyrosine kinase 2 (PTK2), is a ubiquitously expressed non-receptor tyrosine kinase, that plays a pivotal role in integrin-mediated signal transduction. Endothelial FAK is upregulated in many types of cancer and promotes tumorigenesis and tumor progression. However, recent studies have shown that pericyte FAK has the opposite effect. This review article dissects the mechanisms, by which endothelial cells (ECs) and pericyte FAK regulate angiogenesis, with an emphasis on the Gas6/Axl pathway. In particular, this article discusses the role of pericyte FAK loss on angiogenesis during tumorigenesis and metastasis. In addition, the existing challenges and future application of drug-based anti-FAK targeted therapies will be discussed to provide a theoretical basis for further development and use of FAK inhibitors.
Collapse
|