1
|
Wibowo R, Sribudiani Y, Lukman K, Rudiman R, Ruchimat T, Sulthana BAAS, Purnama A, Wijaya A, Primastari E, Nugraha P. CXCL11: A Novel Biomarker in Colorectal Cancer as Metastasis Predictor. Onco Targets Ther 2025; 18:657-665. [PMID: 40386032 PMCID: PMC12085893 DOI: 10.2147/ott.s515119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/22/2025] [Indexed: 05/20/2025] Open
Abstract
Objective CXCL11 (C-X-C motif chemokine ligand 11) encodes a chemokine, a small signaling protein involved in immune and inflammatory responses. This study aims to evaluate the association between CXCL11 gene expression variations and metastasis in colorectal cancer (CRC) patients, highlighting its potential as a biomarker for metastasis. Methods This is observational laboratory-based study utilized tissue samples from colorectal cancer (CRC) patients stored in the Tissue Bank of the Research Unit, Division of Digestive Surgery, Faculty of Medicine, Universitas Padjadjaran. Conducted between January and August 2024, data collection involved pathological and anatomical assessments of tissue samples obtained through biopsies or tumor resections. Gene expression analysis was performed on 60 fresh tumor tissues using PCR at the Biomolecular Laboratory, Faculty of Medicine, Universitas Padjadjaran. Results The findings revealed a significant variation in CXCL11 expression among CRC patients based on cancer stage (P = 0.015) and metastasis status (P = 0.017). However, no significant differences in CXCL11 expression were observed concerning age, gender, anatomical pathology, or tumor location. Conclusion This study identifies a relationship between CXCL11 gene expression differences and metastasis in CRC patients. Further studies with larger sample sizes are recommended to validate CXCL11's role as a biomarker for CRC metastasis. Additionally, future research should explore the potential application of CXCL11 in antitumor therapy.
Collapse
Affiliation(s)
- Riyadi Wibowo
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Yunia Sribudiani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Kiki Lukman
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Reno Rudiman
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Tommy Ruchimat
- Department of Surgery, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | | | - Andriana Purnama
- Department of Surgery, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Alma Wijaya
- Department of Surgery, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Etis Primastari
- Department of Anatomical Pathology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Prapanca Nugraha
- Department of Surgery, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Masrour M, Moeinafshar A, Poopak A, Razi S, Rezaei N. The role of CXC chemokines and receptors in breast cancer. Clin Exp Med 2025; 25:128. [PMID: 40278951 PMCID: PMC12031896 DOI: 10.1007/s10238-025-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
CXC chemokines are a class of cytokines possessing chemotactic properties. Studies indicate that CXC chemokines exhibit dysregulation in miscellaneous cancer categories and are significantly associated with the advancement of tumors. Breast cancer is a commonly diagnosed and fatal cancer among the female population. Breast cancer pathogenesis and progression involve various mechanisms, including invasion, metastasis, angiogenesis, and inflammation. Chemokines and their receptors are involved in all of these processes. The CXC chemokine receptors (CXCRs) and their related ligands have attracted considerable attention due to their multifaceted functions in facilitating and controlling tumor proliferation. CXCRs are expressed by both cancer cells and immune cells, and they play a crucial role in regulating the tumor microenvironment and the immune response. This review aims to assess the potential of CXCRs and CXC chemokines as therapeutic targets or biomarkers for personalized therapy. Additionally, it provides an overview of the current understanding of the expression, function, and prognostic relevance of CXCRs in breast cancer. Furthermore, the challenges and potential prospects pertaining to CXCR investigation in breast cancer are deliberated.
Collapse
Affiliation(s)
- Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirhossein Poopak
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific and Education Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Wang J, Ouyang X, Zhu W, Yi Q, Zhong J. The Role of CXCL11 and its Receptors in Cancer: Prospective but Challenging Clinical Targets. Cancer Control 2024; 31:10732748241241162. [PMID: 38533911 DOI: 10.1177/10732748241241162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Chemokine ligand 11 is a member of the CXC chemokine family and exerts its biological function mainly through binding to CXCR3 and CXCR7. The CXCL11 gene is ubiquitously overexpressed in various human malignant tumors; however, its specific mechanisms vary among different cancer types. Recent studies have found that CXCL11 is involved in the activation of multiple oncogenic signaling pathways and is closely related to tumorigenesis, progression, chemotherapy tolerance, immunotherapy efficacy, and poor prognosis. Depending on the specific expression of its receptor subtype, CXCL11 also has a complex 2-fold role in tumours; therefore, directly targeting the structure-function of CXCL11 and its receptors may be a challenging task. In this review, we summarize the biological functions of CXCL11 and its receptors and their roles in various types of malignant tumors and point out the directions for clinical applications.
Collapse
Affiliation(s)
- Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Koch C, Fischer NC, Puchert M, Engele J. Correction: Interactions of the chemokines CXCL11 and CXCL12 in human tumor cells. BMC Cancer 2023; 23:769. [PMID: 37596594 PMCID: PMC10436660 DOI: 10.1186/s12885-023-11276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023] Open
Affiliation(s)
- Christian Koch
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Raemistrasse 100, Zurich, 8091, Switzerland
| | - Nina Charlotte Fischer
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Malte Puchert
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Sarmoko S, Novitasari D, Toriyama M, Fareza MS, Choironi NA, Itoh H, Meiyanto E. Different Modes of Mechanism of Gamma-Mangostin and Alpha-Mangostin to Inhibit Cell Migration of Triple-Negative Breast Cancer Cells Concerning CXCR4 Downregulation and ROS Generation. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e138856. [PMID: 38655233 PMCID: PMC11036650 DOI: 10.5812/ijpr-138856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 04/26/2024]
Abstract
Background Two mangostin compounds, gamma-mangostin and alpha-mangostin, show anticancer properties through the inhibition of cell proliferation and cell migration. Metastatic triple-negative breast cancer (TNBC) cells, including MDA-MB-231, highly express C-X-C chemokine receptor type 4 (CXCR4) to maintain reactive oxygen species (ROS) and cell migration. Objectives This study was performed to analyze and compare different modes of action of γ-mangostin and α-mangostin as antimigratory effects targeted on CXCR4 in MDA-MB-231 as a model of TNBC cell. Methods This study investigated the effect of γ-mangostin and α-mangostin using a series of assays, including Cell Counting Kit-8 (CCK-8) assay for cytotoxicity, wound healing assay for migration study, quantitative real-time polymerase chain reaction (qRT-PCR) for gene expression analysis, and flow cytometry for ROS measurement, along with in silico study to observe the binding between the compound and CXCR4. Results The findings revealed half maximal inhibitory concentration (IC50) values of 25 and 20 μM for γ-mangostin and α-mangostin in MDA-MB 231 cells, respectively. Moreover, a concentration of 10 μM was used for the migration assay. Both γ-mangostin and α-mangostin significantly suppressed cell migration within 24 hours. The present gene expression studies revealed the downregulation of key migration-associated genes, namely Farp, CXCR4, and LPHN2, upon γ-mangostin treatment but not α-mangostin. Additionally, both γ-mangostin and α-mangostin increased cellular ROS generation, highlighting the same effect of γ-mangostin and α-mangostin ROS elevation to inhibit cancer cell migration. Molecular docking simulations further suggested a potential interaction between γ-mangostin and α-mangostin with CXCR4 in high affinity. Conclusions These findings suggest that both γ-mangostin and α-mangostin inhibit breast cancer cell migration and induce cellular ROS levels in MDA-MB-231 cells; notably, γ-mangostin suppresses CXCR4 mRNA expression that might correlate to its activity to inhibit MDA-MB-231 cell migration.
Collapse
Affiliation(s)
- Sarmoko Sarmoko
- Department of Pharmacy, Sumatera Institute of Technology, Lampung, Indonesia
| | - Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Japan
| | - Manami Toriyama
- Laboratory of Molecular Signal Transduction, Nara Institute of Science and Technology, Japan
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Science, Osaka University, Japan
| | | | | | - Hiroshi Itoh
- Laboratory of Molecular Signal Transduction, Nara Institute of Science and Technology, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
| |
Collapse
|