1
|
Araujo VG, Alexandrino-Mattos DP, Marinho TP, Linden R, Petrs-Silva H. Longitudinal evaluation of morphological, functional and vascular alterations in a rat model of experimental glaucoma. Vision Res 2024; 223:108458. [PMID: 39079282 DOI: 10.1016/j.visres.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 09/09/2024]
Abstract
Glaucoma, the leading cause of irreversible blindness worldwide, is a neurodegenerative disease characterized by chronic axonal damages and progressive loss of retinal ganglion cells, with increased intraocular pressure (IOP) as the primary risk factor. While current treatments focus solely on reducing IOP, understanding glaucoma through experimental models is essential for developing new therapeutic strategies and biomarkers for early diagnosis. Our research group developed an ocular hypertension rat model based on limbal plexus cautery, which provides significant glaucomatous neurodegeneration up to four weeks after injury. We evaluated long-term morphological, functional, and vascular alterations in this model. Our results showed that transient ocular hypertension, lasting approximately one week, can lead to progressive increase in optic nerve cupping and retinal ganglion cells loss. Remarkably, the pressure insult caused several vascular changes, such as arteriolar and venular thinning, and permanent choroidal vascular swelling. This study provides evidence of the longitudinal effects of a pressure insult on retinal structure and function using clinical modalities and techniques. The multifactorial changes reported in this model resemble the complex retinal ganglion cell degeneration found in glaucoma patients, and therefore may also provide a unique tool for the development of novel interventions to either halt or slow down disease progression.
Collapse
Affiliation(s)
- Victor G Araujo
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dio P Alexandrino-Mattos
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais P Marinho
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Linden
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Martín-Loro F, Cano-Cano F, Ortega MJ, Cuevas B, Gómez-Jaramillo L, González-Montelongo MDC, Freisenhausen JC, Lara-Barea A, Campos-Caro A, Zubía E, Aguilar-Diosdado M, Arroba AI. Arylphthalide Delays Diabetic Retinopathy via Immunomodulating the Early Inflammatory Response in an Animal Model of Type 1 Diabetes Mellitus. Int J Mol Sci 2024; 25:8440. [PMID: 39126007 PMCID: PMC11313200 DOI: 10.3390/ijms25158440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent secondary complications associated with diabetes. Specifically, Type 1 Diabetes Mellitus (T1D) has an immune component that may determine the evolution of DR by compromising the immune response of the retina, which is mediated by microglia. In the early stages of DR, the permeabilization of the blood-retinal barrier allows immune cells from the peripheral system to interact with the retinal immune system. The use of new bioactive molecules, such as 3-(2,4-dihydroxyphenyl)phthalide (M9), with powerful anti-inflammatory activity, might represent an advance in the treatment of diseases like DR by targeting the immune systems responsible for its onset and progression. Our research aimed to investigate the molecular mechanisms involved in the interaction of specific cells of the innate immune system during the progression of DR and the reduction in inflammatory processes contributing to the pathology. In vitro studies were conducted exposing Bv.2 microglial and Raw264.7 macrophage cells to proinflammatory stimuli for 24 h, in the presence or absence of M9. Ex vivo and in vivo approaches were performed in BB rats, an animal model for T1D. Retinal explants from BB rats were cultured with M9. Retinas from BB rats treated for 15 days with M9 via intraperitoneal injection were analyzed to determine survival, cellular signaling, and inflammatory markers using qPCR, Western blot, or immunofluorescence approaches. Retinal structure images were acquired via Spectral-Domain-Optical Coherence Tomography (SD-OCT). Our results show that the treatment with M9 significantly reduces inflammatory processes in in vitro, ex vivo, and in vivo models of DR. M9 works by inhibiting the proinflammatory responses during DR progression mainly affecting immune cell responses. It also induces an anti-inflammatory response, primarily mediated by microglial cells, leading to the synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). Ultimately, in vivo administration of M9 preserves the retinal integrity from the degeneration associated with DR progression. Our findings demonstrate a specific interaction between both retinal and systemic immune cells in the progression of DR, with a differential response to treatment, mainly driven by microglia in the anti-inflammatory action. In vivo treatment with M9 induces a switch in immune cell phenotypes and functions that contributes to delaying the DR progression, positioning microglial cells as a new and specific therapeutic target in DR.
Collapse
Affiliation(s)
- Francisco Martín-Loro
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - Fátima Cano-Cano
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - María J. Ortega
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (M.J.O.); (E.Z.)
| | - Belén Cuevas
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (M.J.O.); (E.Z.)
| | - Laura Gómez-Jaramillo
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
| | - Jan Cedric Freisenhausen
- Dermatology and Venereology Division, Department of Medicine, Karolinska Institute, SE-171 77 Solna, Sweden;
- Center for Molecular Medicine, Karolinska University Hospital, SE-171 76 Solna, Sweden
| | - Almudena Lara-Barea
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cádiz, Spain;
| | - Antonio Campos-Caro
- Área Genética, Departamento Biomedicina Biotecnología y Salud Pública, Universidad de Cádiz, 11510 Puerto Real, Spain;
| | - Eva Zubía
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Spain; (M.J.O.); (E.Z.)
| | - Manuel Aguilar-Diosdado
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cádiz, Spain;
| | - Ana I. Arroba
- Diabetes Mellitus Laboratory, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain; (F.M.-L.); (F.C.-C.); (B.C.); (L.G.-J.); (M.d.C.G.-M.); (M.A.-D.)
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cádiz, Spain;
| |
Collapse
|
3
|
Albalawi FE, Alsharif I, Moawadh MS, Alkhoshaiban A, Falah Alshehri F, Albalawi AE, Althobaiti NA, Alharbi ZM, Almohaimeed HM. Immunomodulatory effects of Kaempferol on microglial and Macrophage cells during the progression of diabetic retinopathy. Int Immunopharmacol 2024; 133:112021. [PMID: 38626549 DOI: 10.1016/j.intimp.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.
Collapse
Affiliation(s)
- Fahad Eid Albalawi
- Regional laboratory, blood bank and poisons centre, Sakaka 72346, Saudi Arabia; Medical College, Fahad Bin Sultan University, Tabuk 47721, Saudi Arabia.
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mamdoh S Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Ad Dawadimi-17464, Shaqra University, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of science, Department of Biology, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia
| | - Zeyad M Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
4
|
Venanzi AW, Carmy-Bennun T, Marino FS, Ribeiro M, Hackam AS. Context-Dependent Effects of the Ketogenic Diet on Retinal Ganglion Cell Survival and Axonal Regeneration After Optic Nerve Injury. J Ocul Pharmacol Ther 2023; 39:509-518. [PMID: 37172141 PMCID: PMC10616950 DOI: 10.1089/jop.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/06/2023] [Indexed: 05/14/2023] Open
Abstract
Purpose: There is increasing interest in nonpharmacologic approaches to protect retinal ganglion cells (RGCs) after injury and enhance the efficacy of therapeutic molecules. Accumulating evidence demonstrates neuroprotection by the high-fat low-carbohydrate ketogenic diet (KD) in humans and animal models of neurologic diseases. However, no studies to date have examined whether the KD protects RGCs and promotes axonal regrowth after traumatic injury to the optic nerve (ON) or whether it increases efficacy of experimental proregenerative molecules. In this study, we investigated whether the KD promoted RGC survival and axonal regeneration after ON injury in the presence and absence of neuroprotective Wnt3a ligand. Methods: Adult mice were placed on a KD or control diet before ON crush injury and remained on the diet until the end of the experiment. Nutritional ketosis was confirmed by measuring serum beta-hydroxybutyrate levels. Mice were intravitreally injected with Wnt3a ligand or phosphate-buffered saline (PBS), and RGC survival, function, axonal regeneration, and inflammatory responses were measured. Results: Mice fed the KD showed increased RGC survival and reduced inflammatory cells in PBS-injected mice. Also, mice fed the KD had increased RGC functional responses but not increased RGC numbers in the presence of Wnt3a, indicating that the KD did not enhance the prosurvival effect of Wnt3a. The KD did not promote axonal regeneration in the presence or absence of Wnt3a. Conclusions: The KD has a complex protective effect after ON injury and cotreatment with Wnt3a. This work sets the foundation for studies identifying underlying molecular mechanisms.
Collapse
Affiliation(s)
- Alexander W. Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tal Carmy-Bennun
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Felicia S. Marino
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marcio Ribeiro
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
5
|
Agarwal R, Agarwal P, Iezhitsa I. Exploring the current use of animal models in glaucoma drug discovery: where are we in 2023? Expert Opin Drug Discov 2023; 18:1287-1300. [PMID: 37608634 DOI: 10.1080/17460441.2023.2246892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Animal models are widely used in glaucoma-related research. Since the elevated intraocular pressure (IOP) is a major risk factor underlying the disease pathogenesis, animal models with high IOP are commonly used. However, models are also used to represent the clinical context of glaucomatous changes developing despite a normal IOP. AREAS COVERED Herein, the authors discuss the various factors that contribute to the quality of studies using animal models based on the evaluation of studies published in 2022. The factors affecting the quality of studies using animal models, such as the animal species, age, and sex, are discussed, along with various methods and outcomes of studies involving different animal models of glaucoma. EXPERT OPINION Translating animal research data to clinical applications remains challenging. Our observations in this review clearly indicate that many studies lack scientific robustness not only in their experiment conduct but also in data analysis, interpretation, and presentation. In this context, ensuring the internal validity of animal studies is the first step in quality assurance. External validity, however, is more challenging, and steps should be taken to satisfy external validity at least to some extent.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Puneet Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
6
|
Lagali PS, Shanmugalingam U, Baker AN, Mezey N, Smith PD, Coupland SG, Tsilfidis C. Assessment of the uniform field electroretinogram for mouse retinal ganglion cell functional analysis. Doc Ophthalmol 2023:10.1007/s10633-023-09933-y. [PMID: 37106219 DOI: 10.1007/s10633-023-09933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE The uniform field electroretinogram (UF-ERG) has been suggested as an alternative to the pattern electroretinogram (PERG) for non-invasive assessment of retinal ganglion cell (RGC) function in primates. We evaluated the validity of the UF-ERG to assess mouse RGC activity in vivo. METHODS Unilateral optic nerve crush (ONC) was performed on adult C57BL/6J mice. Contralateral eyes with uncrushed optic nerves and eyes from surgically naive mice served as experimental controls. Electrophysiological visual assessment was performed at 12 weeks post-ONC. Flash-mediated visual-evoked cortical potentials (VEPs) were measured to confirm the robustness of the ONC procedure. Full-field flash ERGs were used to interrogate photoreceptor and retinal bipolar cell function. RGC function was assessed with pattern ERGs. Summed onset and offset UF-ERG responses to alternating dark and light uniform field flash stimuli of different intensities and wavelengths were recorded from ONC and control eyes, and relative differences were compared to the PERG results. Following electrophysiological analysis, RGC loss was monitored by immunohistochemical staining of the RGC marker protein, RBPMS, in post-mortem retinal tissues. RESULTS ONC dramatically impacts RGC integrity and optic nerve function, demonstrated by reduced RGC counts and near complete elimination of VEPs. ONC did not affect scotopic ERG a-wave and b-wave amplitudes, while PERG amplitudes of eyes subjected to ONC were reduced by approximately 50% compared to controls. Summation of ON and OFF UF-ERG responses did not reveal statistically significant differences between ONC and control eyes, regardless of visual stimulus. CONCLUSIONS PERG responses are markedly impaired upon ONC, while UF-ERG responses are not significantly affected by surgical trauma to RGC axons in mice. The more closely related pattern and uniform field ERGs recorded in primates suggests species-specific differences in RGC features or subpopulations corresponding to PERG and UF-ERG response generators, limiting the utility of the UF-ERG for mouse RGC functional analysis.
Collapse
Affiliation(s)
- Pamela S Lagali
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada
| | | | - Adam N Baker
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada
| | - Natalie Mezey
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Patrice D Smith
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Stuart G Coupland
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Catherine Tsilfidis
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- University of Ottawa Eye Institute, The Ottawa Hospital, Ottawa, ON, K1H 8L6, Canada.
- Department of Ophthalmology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|