1
|
Blaufus DK, Kalanetra KM, Pesavento R, Garlapati P, Baikie BC, Kuhn-Riordon KM, Underwood MA, Taft DH. Fecal shedding of SARS-CoV-2 in infants born to SARS-CoV-2 positive mothers: a pilot study. PeerJ 2024; 12:e17956. [PMID: 39221275 PMCID: PMC11363909 DOI: 10.7717/peerj.17956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Fecal shedding of SARS-CoV-2 occurs during infection, particularly in pediatric populations. The gut microbiota are associated with resistance to enteric pathogens. COVID-19 is associated with alterations to the gut microbiome. We hypothesized that the gut microbiome of infants born to SARS-CoV-2+ mothers differs between infants with and without fecal shedding of the virus. Methods We enrolled 10 infants born to SARS-CoV-2+ mothers. We used qPCR on fecal RNA to test for SARS-CoV-2 and 16S rRNA gene sequencing of the V4 region to assess the gut microbiome. Infant SARS-CoV-2 status from nasal swabs was abstracted from medical records. Results Of the 10 included infants, nine were tested for SARS-CoV-2 by nasal swab with 1 testing positive. Four infants, including the nasal swab positive infant, had at least one sample with detectable levels of SARS-CoV-2 fecal shedding. Detection of both SARS-CoV-2 genes in feces was associated with increased gut alpha diversity compared to no detection by a linear mixed effects model (p < 0.001). Detection of both SARS-CoV-2 genes was associated with increased levels Erysipelotrichaceae, Lactobacillaceae, and Ruminococceae by MaAsLin2. Conclusion Fecal shedding of SARS-CoV-2 occurs in infants who test negative on nasal swabs and is associated with differences in the gut microbiome.
Collapse
Affiliation(s)
- Dylan K.P. Blaufus
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Karen M. Kalanetra
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Rosa Pesavento
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States of America
| | - Pranav Garlapati
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States of America
| | - Brittany C. Baikie
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Kara M. Kuhn-Riordon
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States of America
| | - Mark A. Underwood
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States of America
| | - Diana H. Taft
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
2
|
Pace RM, King-Nakaoka EA, Morse AG, Pascoe KJ, Winquist A, Caffé B, Navarrete AD, Lackey KA, Pace CD, Fehrenkamp BD, Smith CB, Martin MA, Barbosa-Leiker C, Ley SH, McGuire MA, Meehan CL, Williams JE, McGuire MK. Prevalence and duration of SARS-CoV-2 fecal shedding in breastfeeding dyads following maternal COVID-19 diagnosis. Front Immunol 2024; 15:1329092. [PMID: 38585272 PMCID: PMC10996396 DOI: 10.3389/fimmu.2024.1329092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Background There is a paucity of data on the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in feces of lactating women with coronavirus disease 2019 (COVID-19) and their breastfed infants as well as associations between fecal shedding and symptomatology. Objective We examined whether and to what extent SARS-CoV-2 is detectable in the feces of lactating women and their breastfed infants following maternal COVID-19 diagnosis. Methods This was a longitudinal study carried out from April 2020 to December 2021 involving 57 breastfeeding maternal-infant dyads: 33 dyads were enrolled within 7 d of maternal COVID-19 diagnosis, and 24 healthy dyads served as controls. Maternal/infant fecal samples were collected by participants, and surveys were administered via telephone over an 8-wk period. Feces were analyzed for SARS-CoV-2 RNA. Results Signs/symptoms related to ears, eyes, nose, and throat (EENT); general fatigue/malaise; and cardiopulmonary signs/symptoms were commonly reported among mothers with COVID-19. In infants of mothers with COVID-19, EENT, immunologic, and cardiopulmonary signs/symptoms were most common, but prevalence did not differ from that of infants of control mothers. SARS-CoV-2 RNA was detected in feces of 7 (25%) women with COVID-19 and 10 (30%) of their infants. Duration of fecal shedding ranged from 1-4 wk for both mothers and infants. SARS-CoV-2 RNA was sparsely detected in feces of healthy dyads, with only one mother's and two infants' fecal samples testing positive. There was no relationship between frequencies of maternal and infant SARS-CoV-2 fecal shedding (P=0.36), although presence of maternal or infant fever was related to increased likelihood (7-9 times greater, P≤0.04) of fecal shedding in infants of mothers with COVID-19.
Collapse
Affiliation(s)
- Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
- College of Nursing, University of South Florida, Tampa, FL, United States
| | - Elana A. King-Nakaoka
- University of Washington School of Medicine, Seattle, WA, United States
- WWAMI Medical Education, University of Idaho, Moscow, ID, United States
| | - Andrew G. Morse
- University of Washington School of Medicine, Seattle, WA, United States
- WWAMI Medical Education, University of Idaho, Moscow, ID, United States
| | - Kelsey J. Pascoe
- College of Nursing, Washington State University, Spokane, WA, United States
| | - Anna Winquist
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Beatrice Caffé
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Alexandra D. Navarrete
- Department of Medicine, Oregon Health and Sciences University, Portland, OR, United States
| | - Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Christina D.W. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Bethaney D. Fehrenkamp
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
- University of Washington School of Medicine, Seattle, WA, United States
- WWAMI Medical Education, University of Idaho, Moscow, ID, United States
| | - Caroline B. Smith
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Melanie A. Martin
- Department of Anthropology, University of Washington, Seattle, WA, United States
- Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, United States
| | | | - Sylvia H. Ley
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
3
|
Goh M, Joy C, Gillespie AN, Soh QR, He F, Sung V. Asymptomatic viruses detectable in saliva in the first year of life: a narrative review. Pediatr Res 2024; 95:508-531. [PMID: 38135726 DOI: 10.1038/s41390-023-02952-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Viral infections are common in children. Many can be asymptomatic or have delayed health consequences. In view of increasing availability of point-of-care viral detection technologies, with possible application in newborn screening, this review aimed to (1) identify potentially asymptomatic viruses detectable in infants under one year old, via saliva/nasopharyngeal swab, and (2) describe associations between viruses and long-term health conditions. We systematically searched Embase(Ovid), Medline(Ovid) and PubMed, then further searched the literature in a tiered approach. From the 143 articles included, 28 potentially asymptomatic viruses were identified. Our second search revealed associations with a range of delayed health conditions, with most related to the severity of initial symptoms. Many respiratory viruses were linked with development of recurrent wheeze or asthma. Of note, some potentially asymptomatic viruses are linked with later non-communicable diseases: adenovirus serotype 36 and obesity, Enterovirus-A71 associated Hand, Foot, Mouth Disease and Attention-Deficit Hyperactivity Disorder, Ebstein Barr Virus (EBV) and malignancy, EBV and multiple sclerosis, HHV-6 and epilepsy, HBoV-1 and lung fibrosis and Norovirus and functional gastrointestinal disorders. Our review identified many potentially asymptomatic viruses, detectable in early life with potential delayed health consequences, that could be important to screen for in the future using rapid point-of-care viral detection methods. IMPACT: Novel point-of-care viral detection technologies enable rapid detection of viruses, both old and emerging. In view of increasing capability to screen for viruses, this is the first review to explore which potentially asymptomatic viruses, that are detectable using saliva and/or nasopharyngeal swabs in infants less than one year of age, are associated with delayed adverse health conditions. Further research into detecting such viruses in early life and their delayed health outcomes may pave new ways to prevent non-communicable diseases in the future.
Collapse
Affiliation(s)
- Melody Goh
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Prevention Innovation, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Charissa Joy
- Prevention Innovation, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Monash Children's Hospital Clayton, Clayton, VIC, Australia
| | - Alanna N Gillespie
- Prevention Innovation, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Centre for Community Child Health, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Qi Rui Soh
- Prevention Innovation, Murdoch Children's Research Institute, Parkville, VIC, Australia
- The University of Melbourne, Faculty of Medicine Dentistry and Health Sciences Melbourne, Melbourne, VIC, Australia
| | - Fan He
- Prevention Innovation, Murdoch Children's Research Institute, Parkville, VIC, Australia
- John Richards Centre for Rural Ageing Research, La Trobe University, Wodonga, VIC, Australia
| | - Valerie Sung
- Prevention Innovation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Monash Children's Hospital Clayton, Clayton, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Khemiri H, Gdoura M, Ben Halima S, Krichen H, Cammà C, Lorusso A, Ancora M, Di Pasquale A, Cherni A, Touzi H, Sadraoui A, Meddeb Z, Hogga N, Ammi R, Triki H, Haddad-Boubaker S. SARS-CoV-2 excretion kinetics in nasopharyngeal and stool samples from the pediatric population. Front Med (Lausanne) 2023; 10:1226207. [PMID: 38020093 PMCID: PMC10643538 DOI: 10.3389/fmed.2023.1226207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for serious respiratory infections in humans. Even in the absence of respiratory symptoms, gastrointestinal (GI) signs were commonly reported in adults and children. Thus, oral-fecal transmission was suspected as a possible route of infection. The objective of this study was to describe RNA shedding in nasopharyngeal and stool samples obtained from asymptomatic and symptomatic children and to investigate virus viability. Methods This study included 179 stool and 191 nasopharyngeal samples obtained from 71 children, which included symptomatic (n = 64) and asymptomatic (n = 7) ones. They were collected every 7 days from the onset of the infection until negativation. Viral RNA was detected by real-time RT-PCR, targeting the N and ORF1 genes. Whole-genome sequencing was performed for positive cases. Viral isolation was assessed on Vero cells, followed by molecular detection confirmation. Results All cases included in this study (n = 71) were positive in their nasopharyngeal samples. SARS-CoV-2 RNA was detected in 36 stool samples obtained from 15 out of 71 (21.1%) children; 13 were symptomatic and two were asymptomatic. Excretion periods varied from 7 to 21 days and 7 to 14 days in nasopharyngeal and fecal samples, respectively. Four variants were detected: Alpha (n = 3), B.1.160 (n = 3), Delta (n = 7), and Omicron (n = 1). Inoculation of stool samples on cell culture showed no specific cytopathic effect. All cell culture supernatants were negative for RT-qPCR. Conclusion Our study demonstrated nasopharyngeal and fecal shedding of SARS-CoV-2 RNA by children up to 21 and 14 days, respectively. Fecal shedding was recorded in symptomatic and asymptomatic children. Nevertheless, SARS-CoV-2 was not isolated from positive stool samples.
Collapse
Affiliation(s)
- Haifa Khemiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samar Ben Halima
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Krichen
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Adriano Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Asma Cherni
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amel Sadraoui
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Zina Meddeb
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nahed Hogga
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Radhia Ammi
- Service of External Consultants, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- LR 20 IPT 02 Laboratory of Virus, Host and Vectors, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Prolonged viral shedding in feces of children with COVID-19: a systematic review and synthesis of data. Eur J Pediatr 2022; 181:4011-4017. [PMID: 36114833 PMCID: PMC9483442 DOI: 10.1007/s00431-022-04622-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
During the coronavirus disease 2019 (COVID-19) epidemic, many reports have indicated that children shed the virus longer than adults in stool, and that most of the children had mild or even asymptomatic infections, which increased the potential risk for feces to be a source of contamination and may play an important role in the spread of the virus. In this review, we collected relevant literature to summarize the duration of fecal viral shedding in children with COVID-19. We found that in about 60% of the cases, the fecal shedding time was between 28 and 42 days, which was much longer than that of adults. We further explored the possible reason for prolonged shedding and its the potential impact. The poor hand hygiene practices of children, their tendency to swallow sputum and/or saliva, the significant difference in expression of angiotensin-converting enzyme 2 (ACE2) in intestine between children and adults, and the variance in immune status and intestinal microbiome could be considered as potential casual agents of longer fecal viral shedding duration of children. Conclusion: Children with COVID-19 show prolonged fecal shedding compared to adults. Several mechanisms may be involved in the longer fecal viral shedding. Viral shedding in the stool could be contributing to a possible route of transmission. Therefore, we think that further preventive measures in children should be taken to reduce the spread of the disease. What is Known: • Children with COVID-19 are more likely to have asymptomatic infections and to experience mild symptoms. • Some patients continue to shed the virus in feces, despite respiratory samples testing negative. What is New: • Children with COVID-19 carried a longer-term fecal viral shedding than adults. • The poor hand hygiene practices of children, their tendency to swallow sputum and/or saliva, the difference in expression of ACE2 in intestine between children and adults, and the variance in immune status and intestinal microbiome could be considered as potential casual agents of longer fecal viral shedding duration of children.
Collapse
|
6
|
Huang WL, Fann WB, Shen RJ, Chu Y, Yang JY. Surveillance of SARS-CoV-2 in Sewage Treatment Plants between January 2020 and July 2021 in Taiwan. Pathogens 2021; 10:1611. [PMID: 34959566 PMCID: PMC8707721 DOI: 10.3390/pathogens10121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/15/2023] Open
Abstract
An outbreak of a new type of coronavirus pneumonia (COVID-19) began in Wuhan, Hubei Province, China, at the end of 2019, and it later spread to other areas of China and around the world. Taiwan reported the first confirmed case from an individual who returned from Wuhan, China, in January 2020 for Chinese New Year. Monitoring microbes in environmental sewage is an important epidemiological indicator, especially for pathogens that can be shed in feces such as poliovirus. We have conducted additional SARS-CoV-2 sewage testing since January 2020 using a well-established poliovirus environmental sewage surveillance system in Taiwan. Wastewater samples were collected from 11 sewage treatment plants from different parts of Taiwan twice a month for laboratory testing. By the end of July 2021, 397 wastewater specimens had been tested, and two samples were positive for SARS-CoV-2. These two wastewater samples were collected in the northern region of Taiwan from Taipei (site A) and New Taipei City (site C) at the beginning of June 2021. This result is consistent with the significant increase in confirmed COVID-19 cases observed in the same period of time. As the pandemic ebbed after June, the wastewater samples in these areas also tested negative for SARS-CoV-2 in July 2021.
Collapse
Affiliation(s)
| | | | | | | | - Jyh-Yuan Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (W.-L.H.); (W.-B.F.); (R.-J.S.); (Y.C.)
| |
Collapse
|