1
|
Otake S, Ogushi K, Dorjkhorloo G, Yokobori T, Nishi A, Kuwano H, Saeki H, Shirabe K. High Tumoral KPNA2 Expression Is a PotentialBiomarker for Poor Prognosis in Advanced Neuroblastoma Patients. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:1-7. [PMID: 39758242 PMCID: PMC11696343 DOI: 10.21873/cdp.10404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Background/Aim Karyopherin alpha 2 (KPNA2) has been reported to be associated with cancer aggressiveness and treatment resistance via transporting several cargo proteins into the nucleus, such as cancer-promoting E2F and DNA repair-related MRN complex. Recent studies have highlighted the KPNA2 functions in tumorigenesis and the progression of various cancers. However, the importance of KPNA2 expression has yet to be elucidated in clinical neuroblastoma patients. This study aimed to analyze the clinical impact of KPNA2 expression in neuroblastoma. Materials and Methods KPNA2 expression in 81 resected neuroblastoma sections was examined using immuno-histochemical staining. The significance and prognostic value of tumoral KPNA2 expression were analyzed using our cohort and R2 database. Results The KPNA2 was expressed in the nucleus of neuroblastoma cells. The expression level of nuclear KPNA2 was not associated with clinicopathological factors in neuroblastoma. Among our cohort (n=81), non-radically resected neuroblastoma patients (n=37) with high KPNA2 expression had poorer prognoses than those with low KPNA2 expression. The R2 database analysis validated that the high KPNA2 expression was related to the poor prognosis in the large-scale neuroblastoma cohort. Conclusion KPNA2 expression evaluation in neuroblastoma is a promising indicator of prognosis in non-curative resected cases. KPNA2 targeting may be a promising therapeutic strategy against advanced neuroblastoma.
Collapse
Affiliation(s)
- Sayaka Otake
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenjiro Ogushi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takehiko Yokobori
- Division of Gene Therapy Science, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Japan
| | - Akira Nishi
- Department of Surgery, Gunma Children's Medical Center, Shibukawa, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
2
|
Dolfini D, Gnesutta N, Mantovani R. Expression and function of NF-Y subunits in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189082. [PMID: 38309445 DOI: 10.1016/j.bbcan.2024.189082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
3
|
Karri RL, Bojji M, Rudraraju A, Mohammad AS, Kosuru V, Kalisipudi S. Unraveling the Molecular Complexity of Adenoid Cystic Carcinoma (ACC): A Comprehensive Exploration of Hub Genes, Protein-Protein Interaction (PPI) Networks, microRNA (miRNA) Involvement, and Drug-Gene Interactions (DGIs). Cureus 2024; 16:e54730. [PMID: 38524085 PMCID: PMC10961157 DOI: 10.7759/cureus.54730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Background Adenoid cystic carcinoma (ACC) poses clinical challenges with its unique histology and potential for perineural invasion, recurrence, and distant metastases. Recent genomic advancements have unveiled key genetic alterations in ACC, offering insights into its pathogenesis. Aim This study aims to unravel the intricate molecular landscape of ACC through a comprehensive analysis of gene expression patterns. By integrating data from multiple microarray datasets, the study explores differentially expressed genes (DEGs), their functional enrichment, protein-protein interactions (PPI), hub genes, microRNA (miRNA) involvement, transcription factors, and potential drug-gene interactions. Methods Three microarray datasets (GSE88804, GSE153002, and GSE36820) related to ACC were selected from the Gene Expression Omnibus (GEO) repository. DEGs were identified using GEO2R and further analyzed for commonalities and differences. Functional enrichment analysis, including Gene Set Enrichment Analysis (GSEA), provided insights into biological processes, cellular components, molecular functions, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with ACC. PPI networks and hub genes were identified using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (STRING Consortium, Lausanne, Switzerland) database and Cytoscape (Cytoscape Consortium, California, United States). The study also explored miRNAs, transcription factors, and potential drug-gene interactions. Results The integrated analysis revealed 339 common upregulated and 643 downregulated DEGs in ACC. Functional and pathway enrichment analyses unveiled the involvement of these genes in critical cellular processes, signaling cascades, and pathways. The PPI network, comprising 904 nodes and 4139 edges, highlighted the complexity of interactions. Hub genes, including KIF11, BUB1, and DLGAP5, were identified, shedding light on their pivotal roles in cell cycle regulation. The study also identified miRNAs (e.g., hsa-mir-7-5p and hsa-mir-138-5p) and transcription factors (e.g., E2F1 and TP53) associated with ACC. Drug-gene interactions have identified potential therapeutic options, including amsacrine and rucaparib. Conclusions The ACC gene expression highlights a nuanced molecular landscape, identifying pivotal hub genes such as KIF11 and CDK1 as potential therapeutic targets for ACC, given their roles in cell cycle progression. The dysregulation of microRNAs and transcription factors adds complexity to ACC's molecular profile. Exploration of drug-gene interactions reveals promising therapeutic strategies, involving FDA-approved drugs such as amsacrine and rucaparib, providing avenues for personalized interventions.
Collapse
Affiliation(s)
- Roja L Karri
- Oral and Maxillofacial Pathology, GSL Dental College and Hospital, Rajahmundry, IND
| | - Manasa Bojji
- Oral and Maxillofacial Pathology, Malla Reddy Dental College for Women, Hyderabad, IND
| | | | - Abdul Sadik Mohammad
- Pediatric and Preventive Dentistry, GSL Dental College and Hospital, Rajahmundry, IND
| | - Vamseedhar Kosuru
- Pediatric and Preventive Dentistry, Narayana Dental College and Hospital, Nellore, IND
| | - Sandeep Kalisipudi
- Pediatric and Preventive Dentistry, Lenora Institute of Dental Sciences, Rajahmundry, IND
| |
Collapse
|
4
|
Chen YJ, Ferdousi F, Bejaoui M, Sasaki K, Isoda H. Microarray meta-analysis reveals comprehensive effects of 3,4,5-tricaffeolyquinic acid in cell differentiation and signaling. Eur J Pharmacol 2023; 960:176143. [PMID: 37866748 DOI: 10.1016/j.ejphar.2023.176143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Caffeoylquinic acids (CQA) are polyphenolic compounds found in fruits, vegetables, coffee, and spices that have exhibited several beneficial activities, including antioxidant, antibacterial, neuroprotective, anti-inflammatory, anticancer, antiviral, antidiabetic, and cardiovascular effects. A derivative, TCQA (3,4,5-Tri-O-caffeoylquinic acid), has also shown both neurogenic and pigment differentiation potential. A transcriptomic-based meta-analysis was conducted to explore potential biochemical processes and molecular targets of TCQA. This approach involved integrating data from various cell and tissue types, including human amniotic stem cells, human neural stem cells, human dermal papilla cells, and the brain cortex of aging model mice. It offered a comprehensive perspective on the significant gene regulations in response to TCQA treatment. The objective was to uncover the mechanism and novel targets of TCQA, facilitating a further understanding of its functions. New areas of interest found were TCQA's effect on adipogenesis, heart, and muscle tissue development. In addition, significantly enhanced biological activities found through meta-analysis included cell cycle, VEGFA-VEGFR2 pathway, and BMP signaling. Overall, a comprehensive functional and visual analysis using available biological databases uncovered the multi-target potential of this natural compound.
Collapse
Affiliation(s)
- Yu Jia Chen
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Meriem Bejaoui
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazunori Sasaki
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8577, Japan; Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
5
|
Wang H, Wang X, Xu L. Chromosome 1p36 candidate gene ZNF436 predicts the prognosis of neuroblastoma: a bioinformatic analysis. Ital J Pediatr 2023; 49:145. [PMID: 37904225 PMCID: PMC10617224 DOI: 10.1186/s13052-023-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Genetic 1p deletion is reported in 30% of all neuroblastoma and is associated with the unfavorable prognosis of neuroblastoma. The expressions and prognosis of 1p candidate genes in neuroblastoma are unclear. METHODS Public neuroblastoma cohorts were obtained for secondary analysis. The prognosis of 1p candidate genes in neuroblastoma was determined using Kaplan-Meier and cox regression analysis. The prediction of the nomogram model was determined using timeROC. RESULTS First, we confirmed the bad prognosis of 1p deletion in neuroblastoma. Moreover, zinc finger protein 436 (ZNF436) located at 1p36 region was down-regulated in 1p deleted neuroblastoma and higher ZNF436 expression was associated with the longer event free survival and overall survival of neuroblastoma. The expression levels of ZNF436 were lower in neuroblastoma patients with MYCN amplification or age at diagnosis ≥ 18months, or with stage 4 neuroblastoma. ZNF436 had robust predictive values of MYCN amplification and overall survival of neuroblastoma. Furthermore, the prognostic significance of ZNF436 in neuroblastoma was independent of MYCN amplification and age of diagnosis. Combinations of ZNF436 with MYCN amplification or age of diagnosis achieved better prognosis. At last, we constructed a nomogram risk model based on age, MYCN amplification and ZNF436. The nomogram model could predict the overall survival of neuroblastoma with high specificity and sensitivity. CONCLUSIONS Chromosome 1p36 candidate gene ZNF436 was a prognostic maker of neuroblastoma.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
MYCN Amplification, along with Wild-Type RB1 Expression, Enhances CDK4/6 Inhibitors’ Efficacy in Neuroblastoma Cells. Int J Mol Sci 2023; 24:ijms24065408. [PMID: 36982482 PMCID: PMC10049239 DOI: 10.3390/ijms24065408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Neuroblastoma (NB) is one of the primary causes of death for pediatric malignancies. Given the high heterogeneity in NB’s mutation landscape, optimizing individualized therapies is still challenging. In the context of genomic alterations, MYCN amplification is the most correlated event with poor outcomes. MYCN is involved in the regulation of several cellular mechanisms, including cell cycle. Thus, studying the influence of MYCN overexpression in the G1/S transition checkpoint of the cell cycle may unveil novel druggable targets for the development of personalized therapeutical approaches. Here, we show that high expression of E2F3 and MYCN correlate with poor prognosis in NB despite the RB1 mRNA levels. Moreover, we demonstrate through luciferase reporter assays that MYCN bypasses RB function by incrementing E2F3-responsive promoter activity. We showed that MYCN overexpression leads to RB inactivation by inducing RB hyperphosphorylation during the G1 phase through cell cycle synchronization experiments. Moreover, we generated two MYCN-amplified NB cell lines conditionally knockdown (cKD) for the RB1 gene through a CRISPRi approach. Indeed, RB KD did not affect cell proliferation, whereas cell proliferation was strongly influenced when a non-phosphorylatable RB mutant was expressed. This finding revealed the dispensable role of RB in regulating MYCN-amplified NB’s cell cycle. The described genetic interaction between MYCN and RB1 provides the rationale for using cyclin/CDK complexes inhibitors in NBs carrying MYCN amplification and relatively high levels of RB1 expression.
Collapse
|
7
|
A Simple, Test-Based Method to Control the Overestimation Bias in the Analysis of Potential Prognostic Tumour Markers. Cancers (Basel) 2023; 15:cancers15041188. [PMID: 36831529 PMCID: PMC9953998 DOI: 10.3390/cancers15041188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The early evaluation of prognostic tumour markers is commonly performed by comparing the survival of two groups of patients identified on the basis of a cut-off value. The corresponding hazard ratio (HR) is usually estimated, representing a measure of the relative risk between patients with marker values above and below the cut-off. A posteriori methods identifying an optimal cut-off are appropriate when the functional form of the relation between the marker distribution and patient survival is unknown, but they are prone to an overestimation bias. In the presence of a small sample size, which is typical of rare diseases, the external validation sets are hardly available and internal cross-validation could be unfeasible. We describe a new method to obtain an unbiased estimate of the HR at an optimal cut-off, exploiting the simple relation between the HR and the associated p-value estimated by a random permutation analysis. We validate the method on both simulated data and set of gene expression profiles from two large, publicly available data sets. Furthermore, a reanalysis of a previously published study, which included 134 Stage 4S neuroblastoma patients, allowed for the identification of E2F1 as a new gene with potential oncogenic activity. This finding was confirmed by an immunofluorescence analysis on an independent cohort.
Collapse
|
8
|
Zhang F, Lu J, Yang J, Dai Q, Du X, Xu Y, Zhang C. SNHG3 regulates NEIL3 via transcription factor E2F1 to mediate malignant proliferation of hepatocellular carcinoma. Immunogenetics 2023; 75:39-51. [PMID: 36114381 DOI: 10.1007/s00251-022-01277-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023]
Abstract
The involvement of small nucleolar RNA host gene 3 (SNHG3) in cancer regulation has been reported. This study attempted to deeply investigate the molecular regulatory mechanism of SNHG3 on malignant progression of hepatocellular carcinoma (HCC). According to TCGA analysis, high SNHG3 expression was a risk factor for poor prognosis of HCC patients. Therefore, we further detected the mRNA level of SNHG3 in HCC tissue and cells. It was found that SNHG3 was upregulated in HCC tissue and cells. Afterwards, CCK-8 and flow cytometry assays further proved that silencing SNHG3 inhibited HCC cell proliferation while inducing cell apoptosis and G0/G1 phase arrest. It was also attested in vivo experiments that silencing SNHG3 could reduce the volume and weight of tumors and downregulate the Ki-67 expression to suppress HCC tumor growth. Next, it was discovered that SNHG3 increased the binding of E2F1 and NEIL3 promoter region, thereby activating the transcription feature of NEIL3. Lastly, rescue assays indicated that NEIL3 participated in SNHG3-mediated HCC cell cycle, apoptosis and proliferation. All in all, this study revealed the specific regulatory mechanism of SNHG3 in HCC to enable SNHG3 a hopeful marker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Fabiao Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jie Lu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Jian Yang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Qiqiang Dai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Xuefeng Du
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yongfu Xu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Caiming Zhang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China.
| |
Collapse
|