1
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2025; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
2
|
Zhang K, Xi J, Zhao H, Wang Y, Xue J, Liang N, Wei Z. A dual-functional microfluidic chip for guiding personalized lung cancer medicine: combining EGFR mutation detection and organoid-based drug response test. LAB ON A CHIP 2024; 24:1762-1774. [PMID: 38352981 DOI: 10.1039/d3lc00974b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Many efforts have been paid to advance the effectiveness of personalized medicine for lung cancer patients. Sequencing-based molecular diagnosis of EGFR mutations has been widely used to guide the selection of anti-lung-cancer drugs. Organoid-based assays have also been developed to ex vivo test individual responses to anti-lung-cancer drugs. After addressing several technical difficulties, a new combined strategy, in which anti-cancer medicines are first selected based on molecular diagnosis and then ex vivo tested on organoids, has been realized in a single dual-functional microfluidic chip. A DNA-based nanoruler has been developed to detect the existence of EGFR mutations and shrink the detection period from weeks to hours, compared with sequencing. The employment of the DNA-based nanoruler creates a possibility to purposively test anti-cancer drugs, either EGFR-TKIs or chemotherapy drugs, not both, on limited amounts of organoids. Moreover, a DNA-based nanosensor has been developed to recognize intracellular ATP variation without harming cell viability, realizing in situ monitoring of the whole course growth status of organoids for on-chip drug response test. The dual-functional microfluidic chip was validated by both cell lines and clinical samples from lung cancer patients. Furthermore, based on the dual-functional microfluidic chip, a fully automated system has been developed to span the divide between experimental procedures and therapeutic approaches. This study constitutes a novel way of combining EGFR mutation detection and organoid-based drug response test on an individual patient for guiding personalized lung cancer medicine.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiyu Xi
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Huiting Zhao
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianchao Xue
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Zewen Wei
- Department of Biomedical Engineering, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Multiplex Snapshot minisequencing for the detection of common PAH gene mutations in Iranian patients with Phenylketonuria. IRANIAN BIOMEDICAL JOURNAL 2023; 27:46-57. [PMID: 36624928 PMCID: PMC9971712 DOI: 10.52547/ibj.3856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Phenylketonuria is a common inborn defect of amino acid metabolism in the world. This failure is caused by an autosomal recessive insufficiency of the hepatic enzyme hyperphenylalaninemia (PAH), which catalyzes the irreversible hydroxylation of phenylalanine to tyrosine. More than 1,040 different disease-causing mutations have already been identified in the PAH gene. The most prominent complication of Phenylketonuria, if not diagnosed and treated, is severe mental retardation. Hence, early diagnosis and initiation of nutritional therapy are the most significant measures in preventing this mental disorder. Given these data, we developed a simple and rapid molecular test to detect the most frequent PAH mutations. Methods Multiplex assay was developed based on the SNaPshot minisequencing approach to simultaneously perform genotyping of the 10 mutations at the PAH gene. We optimized detection of these mutations in one multiplex PCR, followed by 10 single-nucleotide extension reactions. DNA sequencing assay was also used to verify genotyping results obtained by SNaPshot minisequencing. Result All 10 genotypes were determined based on the position and the fluorescent color of the peaks in a single electropherogram. Sequencing results of these frequent mutations showed that by using this method, a 100% detection rate could be achieved in the Iranian population. Conclusion SNaPshot minisequencing can be useful as a secondary test in neonatal screening for HPA in neonates with a positive screening test, and it is also suitable for carrier screening. The assay can be easily applied for accurate and time- and cost-efficient genotyping of the selected SNPs in various population.
Collapse
|
4
|
Ren M, Yang H, Lai Q, Shi D, Liu G, Shuang X, Su J, Xie L, Dong Y, Jiang X. MRI-based radiomics analysis for predicting the EGFR mutation based on thoracic spinal metastases in lung adenocarcinoma patients. Med Phys 2021; 48:5142-5151. [PMID: 34318502 DOI: 10.1002/mp.15137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE This study aims to develop and evaluate multi-parametric MRI-based radiomics for preoperative identification of epidermal growth factor receptor (EGFR) mutation, which is important in treatment planning for patients with thoracic spinal metastases from primary lung adenocarcinoma. METHODS A total of 110 patients were enrolled between January 2016 and March 2019 as a primary cohort. A time-independent validation cohort was conducted containing 52 patients consecutively enrolled from July 2019 to April 2021. The patients were pathologically diagnosed with thoracic spinal metastases from primary lung adenocarcinoma; all underwent T1-weighted (T1W), T2-weighted (T2W), and T2-weighted fat-suppressed (T2FS) MRI scans of the thoracic spinal. Handcrafted and deep learning-based features were extracted and selected from each MRI modality, and used to build the radiomics signature. Various machine learning classifiers were developed and compared. A clinical-radiomics nomogram integrating the combined rad signature and the most important clinical factor was constructed with receiver operating characteristic (ROC), calibration, and decision curves analysis (DCA) to evaluate the prediction performance. RESULTS The combined radiomics signature derived from the joint of three modalities can effectively classify EGFR mutation and EGFR wild-type patients, with an area under the ROC curve (AUC) of 0.886 (95% confidence interval [CI]: 0.826-0.947, SEN =0.935, SPE =0.688) in the training group and 0.803 (95% CI: 0.682-0.924, SEN = 0.700, SPE = 0.818) in the time-independent validation group. The nomogram incorporating the combined radiomics signature and smoking status achieved the best prediction performance in the training (AUC = 0.888, 95% CI: 0.849-0.958, SEN = 0.839, SPE = 0.792) and time-independent validation (AUC = 0.821, 95% CI: 0.692-0.929, SEN = 0.667, SPE = 0.909) cohorts. The DCA confirmed potential clinical usefulness of our nomogram. CONCLUSION Our study demonstrated the potential of multi-parametric MRI-based radiomics on preoperatively predicting the EGFR mutation. The proposed nomogram model can be considered as a new biomarker to guide the selection of individual treatment strategies for patients with thoracic spinal metastases from primary lung adenocarcinoma.
Collapse
Affiliation(s)
- Meihong Ren
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Huazhe Yang
- Department of Biophysics, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Qingyuan Lai
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Dabao Shi
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Guanyu Liu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Xue Shuang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Juan Su
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| | - Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, P.R. China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Xiran Jiang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, P.R. China
| |
Collapse
|
5
|
Hulaniuk ML, Corach D, Trinks J, Caputo M. A simple and rapid approach for human herpesvirus type 8 subtype characterization using single base extension. Lett Appl Microbiol 2021; 73:308-317. [PMID: 34048079 DOI: 10.1111/lam.13515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Sequence analysis of the ORFK1 of human herpesvirus type 8 (HHV-8) allows the identification of six major subtypes (A-F), which are related to human migrations and the clinical progression of Kaposi's sarcoma. Sequencing and subsequent phylogenetic analysis of ORFK1 is considered to be the most reliable method for HHV-8 genotyping. However, it exhibits challenges and limitations. Herein, we designed and validated a single base extension (SBE) protocol for characterization of HHV-8 ORFK1 subtypes. A nested polymerase chain reaction (PCR) protocol was carried out to amplify a small 294-bp PCR product encompassing four single nucleotide polymorphisms at positions 360, 406, 465 and 527 of the HHV-8 genome. Finally, a multiplex SBE technique was developed and validated in 20 samples previously genotyped by phylogenetic analysis. The patterns obtained in this reaction could successfully discriminate between ORFK1 subtypes. The typing results obtained completely matched with those of the 'gold standard' method in all analysed samples. This method can reliably identify HHV-8 subtypes A, B and C, which are the most prevalent ones worldwide, and the remaining subtypes (D, E and F). SBE can be useful as an efficient, rapid and low-cost screening method for viral genotyping in a single tube, particularly samples with low-quality DNA, and with easy data interpretation.
Collapse
Affiliation(s)
- M L Hulaniuk
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano (HIBA), Buenos Aires, Argentina
| | - D Corach
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Buenos Aires, Argentina
| | - J Trinks
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano (HIBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Caputo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Buenos Aires, Argentina
| |
Collapse
|
6
|
Batra U, Nathany S, Sharma M, Jain P, Mehta A. Next generation sequencing for detection of EGFR alterations in NSCLC: is more better? J Clin Pathol 2020; 75:164-167. [PMID: 33372105 DOI: 10.1136/jclinpath-2020-207212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/04/2022]
Abstract
AIMS The emergence of sophisticated next generation sequencing (NGS) based technologies in routine molecular diagnostics has paved the way for robust and accurate detection of variants which may otherwise be missed on single gene testing. This study aims at highlighting the same premise in EGFR mutated non-small cell lung carcinoma (NSCLC). METHODS 1350 cases of NSCLC were screened, of which 490 EGFR mutated cases were taken. The clinical records and molecular features were evaluated retrospectively to determine those cases which were missed on single gene testing. RESULTS Among these 490 cases, there were 11 (2.2%) cases which tested negative on single gene testing using polymerase chain reaction (therascreen). These were then subjected to NGS based testing and were positive for 13 different EGFR mutations. Five out of the 11 cases received EGFR tyrosine kinase inhibitor (TKI) based on the NGS test outcome. Four cases with exon 20 insertion mutations were not offered TKI as these mutations are known to be intrinsically resistant to TKI therapy. The five patients who have been treated with TKI have shown fair response and have not progressed to date. CONCLUSIONS We demonstrated a potentially preferable way to profile treatment-naïve patients with NSCLC by NGS and from our early experience in EGFR mutant cases, the advantages of NGS over single gene testing is clearly evident.
Collapse
Affiliation(s)
- Ullas Batra
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Shrinidhi Nathany
- Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Mansi Sharma
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Parveen Jain
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Anurag Mehta
- Laboratory Services, Molecular Diagnostics and Transfusion Medicine, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
7
|
Sakane T, Murase T, Okuda K, Saida K, Masaki A, Yamada T, Saito Y, Nakanishi R, Inagaki H. A mutation analysis of the EGFR pathway genes, RAS, EGFR, PIK3CA, AKT1 and BRAF, and TP53 gene in thymic carcinoma and thymoma type A/B3. Histopathology 2019; 75:755-766. [PMID: 31179560 DOI: 10.1111/his.13936] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/10/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
AIMS Thymic carcinoma is rare and usually has a fatal outcome. Gene mutations in the epidermal growth factor receptor (EGFR) signalling pathway and TP53 have not been well analysed in thymic carcinoma. METHODS AND RESULTS We examined a large cohort of thymic carcinoma and thymoma type A/B3 and looked for gene mutations in the RAS family, EGFR, PIK3CA, AKT1, BRAF and TP53. Among 54 thymic carcinoma cases, RAS family mutations were detected in 10 cases, EGFR in two, PIK3CA in one, AKT1 in one, BRAF in none and TP53 in five. Among 33 thymoma type A/B3 cases, HRAS gene mutation were found in one, PIK3CA in two and AKT1 in one. All these mutations were those of missense type activating mutations. RAS family mutations were significantly more frequent in thymic carcinoma than in thymoma type A/B3 (P = 0.0461). A prognostic analysis focusing on thymic squamous cell carcinoma cases (n = 44) showed that the overall survival was significantly shorter in patients with EGFR pathway mutations (n = 9) than in those without in a univariate analysis (P = 0.0173). Subsequently, EGFR pathway mutations were selected as an independent factor for a poor overall survival in a multivariate analysis (P = 0.0389). CONCLUSIONS Mutations in the EGFR pathway and TP53 in thymic carcinoma may be frequent, and the EGFR pathway mutations may be associated with a poor prognosis in thymic squamous cell carcinoma patients. The therapeutic significance of gene mutations in thymic carcinoma should be further clarified.
Collapse
Affiliation(s)
- Tadashi Sakane
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takayuki Murase
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kosuke Saida
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Masaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Yamada
- Department of Thoracic Surgery, Kariya Toyota General Hospital, Kariya, Japan
| | - Yushi Saito
- Department of Chest Surgery, Toyota Memorial Hospital, Toyota, Japan
| | - Ryoichi Nakanishi
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
8
|
Noronha V, Rajendra A, Joshi A, Patil V, Menon N, Prabhash K. Epidermal growth factor receptor-mutated non-small-cell lung cancer: A primer on contemporary management. CANCER RESEARCH, STATISTICS, AND TREATMENT 2019. [DOI: 10.4103/crst.crst_51_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Riemann A, Reime S, Thews O. Acidic extracellular environment affects miRNA expression in tumorsin vitroandin vivo. Int J Cancer 2018; 144:1609-1618. [DOI: 10.1002/ijc.31790] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Anne Riemann
- Institute of PhysiologyUniversity Halle Halle (Saale) Germany
| | - Sarah Reime
- Institute of PhysiologyUniversity Halle Halle (Saale) Germany
| | - Oliver Thews
- Institute of PhysiologyUniversity Halle Halle (Saale) Germany
| |
Collapse
|
10
|
Kim E, Feldman R, Wistuba II. Update on EGFR Mutational Testing and the Potential of Noninvasive Liquid Biopsy in Non–Small-cell Lung Cancer. Clin Lung Cancer 2018; 19:105-114. [DOI: 10.1016/j.cllc.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
|
11
|
Mezni F, Mlika M, Boussen H, Ghedira H, Fenniche S, Faten T, Loriot MA. About molecular profile of lung cancer in Tunisian patients. J Immunoassay Immunochem 2018; 39:99-107. [PMID: 29308976 DOI: 10.1080/15321819.2017.1407339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Molecular profile of lung cancer is well known in developed countries. These countries reached the era of liquid biopsies, immunotherapy, and urine circulating tumor DNA. The discrepancies between developed countries and developing ones are becoming deeper. Because of a lack of data in Tunisia, we tried to analyze the molecular profile of non-small-cell carcinomas and to assess the morphologic subtype of adenocarcinomas according to their mutational profile. METHODS We performed molecular analyses in Tunisia and in France of 84 patients who were able to afford the cost of the diagnostic techniques carcinomas diagnosed between 2012 and 2015. The diagnosis was established in our Department of Pathology and the percentage of the tumor cells was estimated by the pathologists. The paraffin-embedded blocks were sent to France, in 41 cases and were analyzed in Tunisia in 43 cases. A next-generation sequencing was performed in France and a real-time polymerase chain reaction (PCR) was performed in our country. RESULTS During the period of study, 1122 lung cancers were diagnosed and 87 patients were able to afford the molecular analyses cost. The mean age of these patients was 53 years. The sex ratio reached 1.9. The molecular analyses were not performed in three cases because of a low tumor cell rate. EGFR mutations were present in 16 cases: 3 men and 13 women. The adenocarcinomas were classified as acinar in 11 cases and solid in 5 cases. ALK-EML4 translocation was present in six cases. Mutations of BRAF, KRAS, P53, and ERBB4 genes were, respectively, detected in two cases, five cases (3 codon 12), three cases, and one case. CONCLUSION This study made us wonder about the possibility of implementing molecular techniques in low-income countries and about the necessity of optimizing the financial resources.
Collapse
Affiliation(s)
- Faouzi Mezni
- a Department of Pathology , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia.,b Research Unit Department of Pathology , Tunis , Tunisia
| | - Mona Mlika
- a Department of Pathology , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia.,b Research Unit Department of Pathology , Tunis , Tunisia
| | - Hamouda Boussen
- c Department of Medical Oncology , Abderrahmane Mami Hospital , Ariana , Tunis
| | - Habib Ghedira
- d Department of Pulmonology, Pav III , Abderrahmane Mami Hospital , Ariana , Tunis
| | - Soraya Fenniche
- e Department of Pulmonology, Pav D , Abderrahmane Mami Hospital , Ariana , Tunis , Tunisia
| | - Talmoudi Faten
- b Research Unit Department of Pathology , Tunis , Tunisia
| | - Marie-Anne Loriot
- f Inserm UMR_S1147, Centre Universitaire des Saints-Pères , Paris , France.,g Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,h Service de Biochimie, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Biology , Paris , France
| |
Collapse
|
12
|
Goh F, Duhig EE, Clarke BE, McCaul E, Passmore L, Courtney D, Windsor M, Naidoo R, Franz L, Parsonson K, Yang IA, Bowman RV, Fong KM. Low tumour cell content in a lung tumour bank: implications for molecular characterisation. Pathology 2017; 49:611-617. [PMID: 28811084 DOI: 10.1016/j.pathol.2017.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/08/2017] [Indexed: 12/23/2022]
Abstract
Lung cancer encompasses multiple malignant epithelial tumour types, each with specific targetable, potentially actionable mutations, such that precision management mandates accurate tumour typing. Molecular characterisation studies require high tumour cell content and low necrosis content, yet lung cancers are frequently a heterogeneous mixture of tumour and stromal cells. We hypothesised that there may be systematic differences in tumour cell content according to histological subtype, and that this may have implications for tumour banks as a resource for comprehensive molecular characterisation studies in lung cancer. To investigate this, we estimated tumour cell and necrosis content of 4267 samples resected from 752 primary lung tumour specimens contributed to a lung tissue bank. We found that banked lung cancer samples had low tumour cell content (33%) generally, although it was higher in carcinoids (77.5%) than other lung cancer subtypes. Tumour cells comprise a variable and often small component of banked resected tumour samples, and are accompanied by stromal reaction, inflammation, fibrosis, and normal structures. This has implications for the adequacy of unselected tumour bank samples for diagnostic and molecular investigations, and further research is needed to determine whether tumour cell content has a significant impact on analytical results in studies using tissue from tumour bank resources.
Collapse
Affiliation(s)
- Felicia Goh
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia.
| | - Edwina E Duhig
- Sullivan Nicolaides Pathology, The John Flynn Hospital, Tugun, Qld, Australia
| | - Belinda E Clarke
- Pathology Queensland, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Elizabeth McCaul
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Linda Passmore
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Deborah Courtney
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Morgan Windsor
- Cardiothoracic Surgery, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Rishendren Naidoo
- Cardiothoracic Surgery, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Louise Franz
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Kylie Parsonson
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Ian A Yang
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Rayleen V Bowman
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| | - Kwun M Fong
- University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Qld, Australia
| |
Collapse
|