1
|
Tian L, Jin J, Lu Q, Zhang H, Tian S, Lai F, Liu C, Liang Y, Lu Y, Zhao Y, Yao S, Ren W. Bidirectional modulation of extracellular vesicle-autophagy axis in acute lung injury: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2024; 180:117566. [PMID: 39423751 DOI: 10.1016/j.biopha.2024.117566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Acute lung injury (ALI), a multifactorial pathological condition, manifests through heightened inflammatory responses, compromised lung epithelial-endothelial barrier function, and oxidative stress, potentially culminating in respiratory failure and mortality. This study explores the intricate interplay between two crucial cellular mechanisms-extracellular vesicles (EVs) and autophagy-in the context of ALI pathogenesis and potential therapeutic interventions.EVs, bioactive membrane-bound structures secreted by cells, serve as versatile carriers of molecular cargo, facilitating intercellular communication and significantly influencing disease progression. Concurrently, autophagy, an essential intracellular degradation process, maintains cellular homeostasis and has emerged as a promising therapeutic target in ALI and acute respiratory distress syndrome.Our research unveils a fascinating "EV-Autophagy dual-drive pathway," characterized by reciprocal regulation between these two processes. EVs modulate autophagy activation and inhibition, while autophagy influences EV production, creating a dynamic feedback loop. This study posits that precise manipulation of this pathway could revolutionize ALI treatment strategies.By elucidating the mechanisms underlying this cellular crosstalk, we open new avenues for targeted therapies. The potential for engineered EVs to fine-tune autophagy in ALI treatment is explored, alongside innovative concepts such as EV-based vaccines for ALI prevention and management. This research not only deepens our understanding of ALI pathophysiology but also paves the way for novel, more effective therapeutic approaches in critical care medicine.
Collapse
Affiliation(s)
- Linqiang Tian
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Clinical Medical Center of Tissue Egineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Jin
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Qianying Lu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Huajing Zhang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Chuanchuan Liu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yangfan Liang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yujia Lu
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Zhao
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China.
| | - Sanqiao Yao
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| | - Wenjie Ren
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Clinical Medical Center of Tissue Egineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
2
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Shi X, Li Y, Chen S, Xu H, Wang X. Desflurane alleviates LPS-induced acute lung injury by modulating let-7b-5p/HOXA9 axis. Immunol Res 2024; 72:683-696. [PMID: 38676899 DOI: 10.1007/s12026-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
Acute lung injury (ALI) is characterized by acute respiratory failure with tachypnea and widespread alveolar infiltrates, badly affecting patients' health. Desflurane (Des) is effective against lung injury. However, its mechanism in ALI remains unknown. BEAS-2B cells were incubated with lipopolysaccharide (LPS) to construct an ALI cell model. Cell apoptosis was evaluated using flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was employed to examine the levels of inflammatory cytokines. Interactions among let-7b-5p, homeobox A9 (HOXA9), and suppressor of cytokine signaling 2 (SOCS2) were verified using Dual luciferase activity, chromatin immunoprecipitation (ChIP), and RNA pull-down analysis. All experimental data of this study were derived from three repeated experiments. Des treatment improved LPS-induced cell viability, reduced inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)) levels, decreased cell apoptosis, down-regulated the pro-apoptotic proteins (Bcl-2-associated X protein (Bax) and cleaved caspase 3) expression, and up-regulated the anti-apoptotic protein B-cell-lymphoma-2 (Bcl-2) expression in LPS-induced BEAS-2B cells. Des treatment down-regulated let-7b-5p expression in LPS-induced BEAS-2B cells. Moreover, let-7b-5p inhibition improved LPS-induced cell injury. let-7b-5p overexpression weakened the protective effects of Des. Mechanically, let-7b-5p could negatively modulate HOXA9 expression. Furthermore, HOXA9 inhibited the NF-κB signaling by enhancing SOCS2 transcription. HOXA9 overexpression weakened the promotion of let-7b-5p mimics in LPS-induced cell injury. Des alleviated LPS-induced ALI via regulating let-7b-5p/ HOXA9/NF-κB axis.
Collapse
Affiliation(s)
- Xiaoyun Shi
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China
| | - Yundie Li
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China
| | - Shibiao Chen
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China
| | - Huaping Xu
- Department of Rehabilitation, Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiuhong Wang
- Department of Anesthesiology, Medical Center of Anesthesiology and PainDonghu DistrictJiangxi Province, The First Affiliated Hospital of Nanchang University, No. 17, Yongwaizheng Street, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
4
|
Hu Y, Hu Y, Lu X, Luo H, Chen Z. LINC00839 in Human Disorders: Insights into its Regulatory Roles and Clinical Impact, with a Special Focus on Cancer. J Cancer 2024; 15:2179-2192. [PMID: 38495499 PMCID: PMC10937278 DOI: 10.7150/jca.93820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
LINC00839 has captured significant attention within a spectrum of human disorders, including acute lung injury, osteoarthritis, and childhood obesity. Notably, aberrant expression patterns of LINC00839 have been observed across diverse cancer tissues and cell lines. LINC00839 emerges as an oncogenic factor in tumorigenesis and exerts a positive influence on tumor-associated behaviors. Its therapeutic potential for various cancers is underscored by its modulatory impact on pivotal signaling pathways, such as PI3K/AKT, OXPHOS, and Wnt/β-catenin. Additionally, LINC00839's role in reducing sensitivity to drug and radiotherapy interventions presents opportunities for targeted intervention. Furthermore, elevated LINC00839 expression indicates advanced clinicopathological features and foretells unfavorable prognoses, as validated by publications and comprehensive analyses of tumor types using TCGA datasets. This review elucidates the multiple regulatory mechanisms and functional implications of LINC00839 in various diseases, especially malignancies, emphasizing its potential as a predictive biomarker and therapeutic target across multiple disease domains in humans.
Collapse
Affiliation(s)
- Yingqiu Hu
- Emergency Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yushan Hu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Xuan Lu
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Ziwen Chen
- Department of Gastrointestinal Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
5
|
Li AH, Bu S, Wang L, Liang AM, Luo HY. Impact of propofol and sevoflurane anesthesia on cognition and emotion in gastric cancer patients undergoing radical resection. World J Gastrointest Oncol 2024; 16:79-89. [PMID: 38292851 PMCID: PMC10824106 DOI: 10.4251/wjgo.v16.i1.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Propofol and sevoflurane are commonly used anesthetic agents for maintenance anesthesia during radical resection of gastric cancer. However, there is a debate concerning their differential effects on cognitive function, anxiety, and depression in patients undergoing this procedure. AIM To compare the effects of propofol and sevoflurane anesthesia on postoperative cognitive function, anxiety, depression, and organ function in patients undergoing radical resection of gastric cancer. METHODS A total of 80 patients were involved in this research. The subjects were divided into two groups: Propofol group and sevoflurane group. The evaluation scale for cognitive function was the Loewenstein occupational therapy cognitive assessment (LOTCA), and anxiety and depression were assessed with the aid of the self-rating anxiety scale (SAS) and self-rating depression scale (SDS). Hemodynamic indicators, oxidative stress levels, and pulmonary function were also measured. RESULTS The LOTCA score at 1 d after surgery was significantly lower in the propofol group than in the sevoflurane group. Additionally, the SAS and SDS scores of the sevoflurane group were significantly lower than those of the propofol group. The sevoflurane group showed greater stability in heart rate as well as the mean arterial pressure compared to the propofol group. Moreover, the sevoflurane group displayed better pulmonary function and less lung injury than the propofol group. CONCLUSION Both propofol and sevoflurane could be utilized as maintenance anesthesia during radical resection of gastric cancer. Propofol anesthesia has a minimal effect on patients' pulmonary function, consequently enhancing their postoperative recovery. Sevoflurane anesthesia causes less impairment on patients' cognitive function and mitigates negative emotions, leading to an improved postoperative mental state. Therefore, the selection of anesthetic agents should be based on the individual patient's specific circumstances.
Collapse
Affiliation(s)
- Ao-Han Li
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Su Bu
- Department of Cardiothoracic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Ling Wang
- Department of Rehabilitation, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Ai-Min Liang
- Department of Internal Medicine-Cardiovascular, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| | - Hui-Yu Luo
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei Province, China
| |
Collapse
|
6
|
Fu B, Zhou F, Zhang J, Kong X, Ni B, Bu J, Xu S, He C. Sevoflurane attenuates proliferative and migratory activity of lung cancer cells via mediating the microRNA-100-3p/sterol O-Acyltransferase 1 axis. CHINESE J PHYSIOL 2023; 66:456-465. [PMID: 38149558 DOI: 10.4103/cjop.cjop-d-22-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Recently, evidence has shown that microRNA-100-3p (miR-100-3p) has been revealed as a tumor suppressor in diverse human diseases, while its capability in lung cancer warrants further validation. In this work, we aimed to discuss the impact of sevoflurane on biological functions of lung cancer cells by modulating the miR-100-3p/sterol O-acyltransferase 1 (SOAT1) axis. Lung cancer cell lines (A549 and H460) were treated with various concentrations of sevoflurane. Cell viability, proliferation, migration, and invasion were evaluated using MTT, colony formation, wound healing, and transwell assays. Moreover, miR-100-3p and SOAT1 expressions were evaluated by reverse transcription-quantitative polymerase chain reaction in lung cancer cells. The target interaction between miR-100-3p and SOAT1 was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. The findings of our work demonstrated that sevoflurane impeded the abilities on viability, proliferation, migration, and invasion of A549 and H460 cells. The expression of miR-100-3p was reduced, and SOAT1 expression was elevated in lung cancer cells. miR-100-3p targeted SOAT1. Besides, sevoflurane could lead to expressed improvement of miR-100-3p or limitation of SOAT1. Downregulation of miR-100-3p or upregulation of SOAT1 restored the suppression of sevoflurane on abilities of viability, proliferation, migration, and invasion in A549 and H460 cells. In the rescue experiment, downregulation of SOAT1 reversed the impacts of downregulation of miR-100-3p on sevoflurane on lung cancer cells. Collectively, our study provides evidence that sevoflurane restrained the proliferation and invasion in lung cancer cells by modulating the miR-100-3p/SOAT1 axis. This article provides a new idea for further study of the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Bicheng Fu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Fucheng Zhou
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jian Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianglong Kong
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boxiong Ni
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jianlong Bu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shidong Xu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Changjun He
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Liang G, Feng Y, Tang W, Yao L, Huang C, Chen Y. Proinflammatory Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-150-3p Suppresses Proinflammatory Polarization of Alveolar Macrophages in Sepsis by Targeting Inhibin Subunit Beta A. J Interferon Cytokine Res 2023; 43:518-530. [PMID: 37819735 DOI: 10.1089/jir.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes can protect lung tissues against sepsis, but its related mechanism remains elusive. BMSCs were primed with or without lipopolysaccharide (LPS) before extracting exosomes. The isolated exosomes were identified by transmission electron microscopy, nanoparticle tracking analysis, and western blot. LPS-stimulated macrophages were cocultured with exosomes for 24 h, followed by enzyme-linked immunosorbent assay, flow cytometry, and molecular experiments. Bioinformatics and luciferase assay were employed to investigate the interaction between miR-150-3p and inhibin subunit beta A (INHBA). MiR-150-3p expression was increased in exosomes in a proinflammatory environment. Exosomes suppressed proinflammatory polarization by downregulating IL-6, IL-1β, iNOS, and CD86, as well as promoted anti-inflammatory polarization by upregulating IL-10, ARG-1, and CD206 in LPS-stimulated macrophages. Such effects were more pronounced by LPS-primed exosomes, which was reversed in the absence of miR-150-3p. MiR-150-3p targeted INHBA. INHBA silencing decreased CD86 expression and increased CD206 expression in macrophages, but these effects were reversed by exosomal miR-150-3p inhibition. Proinflammatory BMSC-derived exosomal miR-150-3p suppressed proinflammatory polarization and promoted anti-inflammatory polarization of alveolar macrophages to attenuate LPS-induced sepsis by targeting INHBA.
Collapse
Affiliation(s)
- Guojin Liang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yueying Feng
- Department of Pediatrics, Ningbo Women & Children's Hospital, Ningbo, China
| | - Wan Tang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Lifeng Yao
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Changshun Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
8
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
9
|
Liu HY, Zhang SP, Zhang CX, Gao QY, Liu YY, Ge SL. Postoperative hypoxemia for patients undergoing Stanford type A aortic dissection. World J Clin Cases 2023; 11:3140-3147. [PMID: 37274044 PMCID: PMC10237117 DOI: 10.12998/wjcc.v11.i14.3140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Clinically, it is widely recognized that surgical treatment is the preferred and reliable option for Stanford type A aortic dissection. Stanford type A aortic dissection is an emergent and serious cardiovascular disease characterized with an acute onset, poor prognosis, and high mortality. However, the incidences of postoperative complications are relatively higher due to the complexity of the disease and its intricate procedure. It has been considered that hypoxemia, one of the most common postoperative complications, plays an important role in having a worse clinical prognosis. Therefore, the effective intervention of postoperative hypoxemia is significant for the improved prognosis of patients with Stanford type A aortic dissection.
Collapse
Affiliation(s)
- Hai-Yuan Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Shuai-Peng Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Cheng-Xin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Qing-Yun Gao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yu-Yong Liu
- First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Sheng-Lin Ge
- First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|