1
|
Zhu Y, Jia G, Yang Y, Weng J, Liu S, Zhang M, Zhang G, Qin H, Chen Y, Yang Q, Yuan G, Yu F, Zeng H. Biomimetic Porous Magnesium Alloy Scaffolds Promote the Repair of Osteoporotic Bone Defects in Rats through Activating the Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng 2023. [PMID: 37200162 DOI: 10.1021/acsbiomaterials.2c01097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, biomimetic porous magnesium alloy scaffolds were prepared to repair femoral bone defects in ovariectomized osteoporotic rats. The purpose of the study was to investigate the effect of biomimetic porous magnesium alloy scaffolds on repairing osteoporotic bone defects and possible mechanisms. The animal model of osteoporosis was established in female SD rats. Three months later, a bone defect of 3 mm in diameter and 3 mm in depth was created in the lateral condyle of the right femur. The rats were then randomly divided into two groups: an experimental group and a control group. Four weeks after surgery, gross specimens were observed and micro-CT scans were performed. The repair of osteoporotic femoral defects in rats was studied histologically using HE staining, Masson staining, and Goldner staining. The expression of Wnt5a, β-catenin, and BMP-2 was measured between groups by immunohistochemical staining. The bone defect was repaired better after the application of biomimetic porous magnesium alloy scaffolds. Immunohistochemical results showed significantly higher expression of Wnt5a, β-catenin, and BMP-2. To conclude, the biomimetic porous magnesium alloy scaffolds proposed in this paper might promote the repair of osteoporotic femoral bone defects in rats possibly through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yifei Yang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengwei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Geng Zhang
- Zunyi Medical University, Zunyi 563000, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guangyin Yuan
- Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
2
|
Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023; 13:biom13030483. [PMID: 36979418 PMCID: PMC10046187 DOI: 10.3390/biom13030483] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoporosis, one of the serious health diseases, involves bone mass loss, bone density diminishing, and degeneration of bone microstructure, which is accompanied by a tendency toward bone fragility and a predisposition to fracture. More than 200 million people worldwide suffer from osteoporosis, and the cost of treating osteoporotic fractures is expected to reach at least $25 billion by 2025. The generation and development of osteoporosis are regulated by genetic factors and regulatory factors such as TGF-β, BMP, and FGF through multiple pathways, including the Wnt signaling pathway, the Notch signaling pathway, and the MAPK signaling pathway. Among them, the Wnt signaling pathway is one of the most important pathways. It is not only involved in bone development and metabolism but also in the differentiation and proliferation of chondrocytes, mesenchymal stem cells, osteoclasts, and osteoblasts. Dkk-1 and SOST are Wnt inhibitory proteins that can inhibit the activation of the canonical Wnt signaling pathway and block the proliferation and differentiation of osteoblasts. Therefore, they may serve as potential targets for the treatment of osteoporosis. In this review, we analyzed the mechanisms of Wnt proteins, β-catenin, and signaling molecules in the process of signal transduction and summarized the relationship between the Wnt signaling pathway and bone-related cells. We hope to attract attention to the role of the Wnt signaling pathway in osteoporosis and offer new perspectives and approaches to making a diagnosis and giving treatment for osteoporosis.
Collapse
|
3
|
Hrdlicka HC, Pereira RC, Shin B, Yee SP, Deymier AC, Lee SK, Delany AM. Inhibition of miR-29-3p isoforms via tough decoy suppresses osteoblast function in homeostasis but promotes intermittent parathyroid hormone-induced bone anabolism. Bone 2021; 143:115779. [PMID: 33253931 PMCID: PMC7770763 DOI: 10.1016/j.bone.2020.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/07/2023]
Abstract
miRNAs play a vital role in post-transcriptional regulation of gene expression in osteoblasts and osteoclasts, and the miR-29 family is expressed in both lineages. Using mice globally expressing a miR-29-3p tough decoy, we demonstrated a modest 30-60% decrease all three miR-29-3p isoforms: miR-29a, miR-29b, and miR-29c. While the miR-29-3p decoy did not impact osteoclast number or function, the tough decoy decreased bone formation in growing mice, which led to decreased trabecular bone volume in mature animals. These data support previous in vitro studies suggesting that miR-29-3p is a positive regulator of osteoblast differentiation. In contrast, when mice were treated with intermittent parathyroid hormone (PTH1-34), inhibition of miR-29-3p augmented the effect of PTH on cortical bone anabolism, increased bone formation rate and osteoblast surface, and increased levels of Ctnnb1/βcatenin mRNA, which is a miR-29 target. These findings highlight differences in the mechanisms controlling basal level bone formation and bone formation induced by intermittent PTH. Overall, the global miR-29-3p tough decoy model represents a modest loss-of-function, which could be a relevant tool for assessing the possible impact of systemically administered miR-29-3p inhibitors. Our studies provide a potential rationale for co-administration of PTH1-34 and miR-29-3p inhibitors, to boost bone formation in severely affected osteoporosis patients, particularly in the cortical compartment.
Collapse
Affiliation(s)
- Henry C Hrdlicka
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America
| | - Renata C Pereira
- Division of Pediatric Nephrology, David Geffen School of Medicine at University of California, Los Angeles, United States of America
| | - Bongjin Shin
- Center on Aging, UConn Health Center, Farmington, CT, United States of America
| | - Siu-Pok Yee
- Center for Mouse Genome Modification, UConn Health Center, Farmington, CT, United States of America
| | - Alix C Deymier
- Institute of Material Sciences, UConn Health Center, Farmington, CT, United States of America
| | - Sun-Kyeong Lee
- Center on Aging, UConn Health Center, Farmington, CT, United States of America.
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health Center, Farmington, CT, United States of America.
| |
Collapse
|
4
|
Desai S, Jayasuriya CT. Implementation of Endogenous and Exogenous Mesenchymal Progenitor Cells for Skeletal Tissue Regeneration and Repair. Bioengineering (Basel) 2020; 7:E86. [PMID: 32759659 PMCID: PMC7552784 DOI: 10.3390/bioengineering7030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Harnessing adult mesenchymal stem/progenitor cells to stimulate skeletal tissue repair is a strategy that is being actively investigated. While scientists continue to develop creative and thoughtful ways to utilize these cells for tissue repair, the vast majority of these methodologies can ultimately be categorized into two main approaches: (1) Facilitating the recruitment of endogenous host cells to the injury site; and (2) physically administering into the injury site cells themselves, exogenously, either by autologous or allogeneic implantation. The aim of this paper is to comprehensively review recent key literature on the use of these two approaches in stimulating healing and repair of different skeletal tissues. As expected, each of the two strategies have their own advantages and limitations (which we describe), especially when considering the diverse microenvironments of different skeletal tissues like bone, tendon/ligament, and cartilage/fibrocartilage. This paper also discusses stem/progenitor cells commonly used for repairing different skeletal tissues, and it lists ongoing clinical trials that have risen from the implementation of these cells and strategies. Lastly, we discuss our own thoughts on where the field is headed in the near future.
Collapse
Affiliation(s)
| | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and the Rhode Island Hospital, Providence, RI 02903, USA;
| |
Collapse
|