1
|
Hodgkiss DD, Balthazaar SJT, Welch JF, Wadley AJ, Cox PA, Lucas RAI, Veldhuijzen van Zanten JJCS, Chiou SY, Lucas SJE, Nightingale TE. Short- and long-term effects of transcutaneous spinal cord stimulation on autonomic cardiovascular control and arm-crank exercise capacity in individuals with a spinal cord injury (STIMEX-SCI): study protocol. BMJ Open 2025; 15:e089756. [PMID: 39819908 PMCID: PMC11751795 DOI: 10.1136/bmjopen-2024-089756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Individuals with higher neurological levels of spinal cord injury (SCI) at or above the sixth thoracic segment (≥T6), exhibit impaired resting cardiovascular control and responses during upper-body exercise. Over time, impaired cardiovascular control predisposes individuals to lower cardiorespiratory fitness and thus a greater risk for cardiovascular disease and mortality. Non-invasive transcutaneous spinal cord stimulation (TSCS) has been shown to modulate cardiovascular responses at rest in individuals with SCI, yet its effectiveness to enhance exercise performance acutely, or promote superior physiological adaptations to exercise following an intervention, in an adequately powered cohort is unknown. Therefore, this study aims to explore the efficacy of acute TSCS for restoring autonomic function at rest and during arm-crank exercise to exhaustion (AIM 1) and investigate its longer-term impact on cardiorespiratory fitness and its concomitant benefits on cardiometabolic health and health-related quality of life (HRQoL) outcomes following an 8-week exercise intervention (AIM 2). METHODS AND ANALYSIS Sixteen individuals aged ≥16 years with a chronic, motor-complete SCI between the fifth cervical and sixth thoracic segments will undergo a baseline TSCS mapping session followed by an autonomic nervous system (ANS) stress test battery, with and without cardiovascular-optimised TSCS (CV-TSCS). Participants will then perform acute, single-session arm-crank exercise (ACE) trials to exhaustion with CV-TSCS or sham TSCS (SHAM-TSCS) in a randomised order. Twelve healthy, age- and sex-matched non-injured control participants will be recruited and will undergo the same ANS tests and exercise trials but without TSCS. Thereafter, the SCI cohort will be randomly assigned to an experimental (CV-TSCS+ACE) or control (SHAM-TSCS+ACE) group. All participants will perform 48 min of ACE twice per week (at workloads corresponding to 73-79% peak oxygen uptake), over a period of 8 weeks, either with (CV-TSCS) or without (SHAM-TSCS) cardiovascular-optimised stimulation. The primary outcomes are time to exhaustion (AIM 1) and cardiorespiratory fitness (AIM 2). Secondary outcomes for AIM 1 include arterial blood pressure, respiratory function, cerebral blood velocity, skeletal muscle tissue oxygenation, along with concentrations of catecholamines, brain-derived neurotrophic factor and immune cell dynamics via venous blood sampling pre, post and 90 min post-exercise. Secondary outcomes for AIM 2 include cardiometabolic health biomarkers, cardiac function, arterial stiffness, 24-hour blood pressure lability, energy expenditure, respiratory function, neural drive to respiratory muscles, seated balance and HRQoL (eg, bowel, bladder and sexual function). Outcome measures will be assessed at baseline, pre-intervention, post-intervention and after a 6-week follow-up period (HRQoL questionnaires only). ETHICS AND DISSEMINATION Ethical approval has been obtained from the Wales Research Ethics Committee 7 (23/WA/0284; 03/11/2024). The recruitment process began in February 2024, with the first enrolment in July 2024. Recruitment is expected to be completed by January 2026. The results will be presented at international SCI and sport-medicine conferences and will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN17856698.
Collapse
Affiliation(s)
- Daniel D Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Shane J T Balthazaar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Phoebe A Cox
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jet J C S Veldhuijzen van Zanten
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Echevarria-Cruz E, McMillan DW, Reid KF, Valderrábano RJ. Spinal Cord Injury Associated Disease of the Skeleton, an Unresolved Problem with Need for Multimodal Interventions. Adv Biol (Weinh) 2024:e2400213. [PMID: 39074256 DOI: 10.1002/adbi.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Spinal cord injury is associated with skeletal unloading, sedentary behavior, decreases in skeletal muscle mass, and exercise intolerance, which results in rapid and severe bone loss. To date, monotherapy with physical interventions such as weight-bearing in standing frames, computer-controlled electrically stimulated cycling and ambulation exercise, and low-intensity vibration are unsuccessful in maintaining bone density after SCI. Strategies to maintain bone density with commonly used osteoporosis medications also fail to provide a significant clinical benefit, potentially due to a unique pathology of bone deterioration in SCI. In this review, the available data is discussed on evaluating and monitoring bone loss, fracture, and physical and pharmacological therapeutic approaches to SCI-associated disease of the skeleton. The treatment of SCI-associated disease of the skeleton, the implications for clinical management, and areas of need are considered for future investigation.
Collapse
Affiliation(s)
- Evelyn Echevarria-Cruz
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| | - David W McMillan
- The Miami Project to Cure Paralysis, University of Miami Leonard M. Miller School of Medicine, 1611 NW 12th ave, Office 2.141, Miami, FL, 33136, USA
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kieran F Reid
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
- Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rodrigo J Valderrábano
- Research Program in Men's Health, Aging and Metabolism, and Boston Claude D. Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave Boston, 5th Floor, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Valderrábano RJ, Pencina K, Shang YV, Echevarria E, Dixon R, Ghattas C, Wilson L, Reid KF, Storer T, Garrahan M, Tedtsen T, Zafonte R, Bouxsein M, Bhasin S. Bone microarchitectural alterations associated with spinal cord injury: Relation to sex hormones, metabolic factors, and loading. Bone 2024; 181:117039. [PMID: 38325649 DOI: 10.1016/j.bone.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
CONTEXT People living with spinal cord injury (SCI) are at high risk for bone fractures. Neural, hormonal and metabolic contributors to bone microarchitectural alterations are incompletely understood. OBJECTIVE To determine the relationship of physical, metabolic and endocrine characteristics with bone microarchitecture, characterized using high-resolution peripheral quantitative computed tomography (HRpQCT) in SCI. DESIGN Cross-sectional analyses of bone properties in people with SCI. PARTICIPANTS Twenty adults with SCI and paraplegia (12) or motor incomplete quadriplegia (8). OUTCOME MEASURES Distal tibia and radius HRpQCT parameters, including density, microstructure and strength by microfinite element anaysis (μFEA); sex hormones; metabolic and inflammatory markers. RESULTS The mean age of the participants with SCI was 41.5 ± 10.3 years, BMI 25.7 ± 6.2 kg/m2, time since injury 10.4 ± 9.0 years. Participants with SCI had significantly lower median total (Z score - 3.3), trabecular (-2.93), and cortical vBMD (-1.87), and Failure Load by μFEA (-2.48) at the tibia than controls. However, radius vBMD, aBMD and microarchitecture were similar in participants with SCI and un-injured controls. Unexpectedly, C-Reactive Protein (CRP) was positively associated with tibial trabecular vBMD (β = 0.77, p = 0.02), thickness (β = 0.52, p = 0.04) and number (β = 0.92, p = 0.02). At the radius, estradiol level was positively associated with total vBMD (β = 0.59, p = 0.01), trabecular thickness (β = 0.43, p = 0.04), cortical thickness (β = 0.63, p = 0.01) and cortical porosity (β = 0.74 p = 0.04). CONCLUSIONS Radius vBMD and microarchitecture is preserved but tibial total, cortical and trabecular vBMD, and estimated bone strength are markedly lower and bone microarchitectural parameters substantially degraded in people with SCI. The alterations in bone microarchitecture in people with SCI are likely multifactorial, however marked degradation of bone microarchitecture in tibia but not radius suggests that unloading is an important contributor of site-specific alterations of bone microarchitecture after SCI. Fracture prevention in SCI should focus on strategies to safely increase bone loading. CLINICALTRIALS gov registration #: (NCT03576001).
Collapse
Affiliation(s)
- Rodrigo J Valderrábano
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Karol Pencina
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yili-Valentine Shang
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Evelyn Echevarria
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Robert Dixon
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Catherine Ghattas
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Lauren Wilson
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kieran F Reid
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Thomas Storer
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Margaret Garrahan
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Trinity Tedtsen
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mary Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Shalender Bhasin
- Research Program in Men's Health, Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
4
|
Walsh CM, Gull K, Dooley D. Motor rehabilitation as a therapeutic tool for spinal cord injury: New perspectives in immunomodulation. Cytokine Growth Factor Rev 2023; 69:80-89. [PMID: 36114092 DOI: 10.1016/j.cytogfr.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that significantly impacts motor, sensory and autonomic function in patients. Despite advances in therapeutic approaches, there is still no curative therapy currently available. Neuroinflammation is a persisting event of the secondary injury phase of SCI that affects functional recovery, and modulation of the inflammatory response towards a beneficial anti-inflammatory state can improve recovery in preclinical SCI models. In human SCI patients, rehabilitative exercise, or motor rehabilitation as we will refer to it from here on out, remains the cornerstone of treatment to increase functional capacity and prevent secondary health implications. Motor rehabilitation is known to have anti-inflammatory effects; however, current literature is lacking in the description of the effect of motor rehabilitation on inflammation in the context of SCI. Understanding the effect on different inflammatory markers after SCI should enable the optimization of motor rehabilitation as a therapeutic regime. This review extensively describes the effect of motor rehabilitation on selected inflammatory mediators in both preclinical and human SCI studies. Additionally, we summarize how the type, duration, and intensity of motor rehabilitation can affect the inflammatory response after SCI. In doing so, we introduce a new perspective on how motor rehabilitation can be optimized as an immunomodulatory therapy to improve patient outcome after SCI.
Collapse
Affiliation(s)
- Ciara M Walsh
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Khadija Gull
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
McLoughlin RJ, Lu Z, Warneryd AC, Swanson RL. A Systematic Review of Testosterone Therapy in Men With Spinal Cord Injury or Traumatic Brain Injury. Cureus 2023; 15:e34264. [PMID: 36855479 PMCID: PMC9968415 DOI: 10.7759/cureus.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Spinal cord injuries (SCI) and traumatic brain injuries (TBI) increase the risk of testosterone deficiency and result in adverse changes in body composition and poor functional outcomes. The current systematic review aims to provide insights into the use of testosterone therapy for treating men with SCI and TBI. The PubMed and EMBASE databases were systematically reviewed using appropriate terms, and resulting manuscripts were screened using defined Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The patient population included male patients with SCI or TBI. Further inclusion criteria were: a) human participants 18 years of age or older; b) manuscript published in English; c) study included an intervention with exogenous testosterone; and d) articles published in peer-reviewed journals with full text available. Two reviewers independently extracted data regarding injury type, intervention, and outcomes. Following screening for inclusion/exclusion criteria, a total of 12 primary research studies conducted over the last 30 years were included. Men with SCI were investigated in 11 articles. The combination of testosterone patches and resistance training with functional electrical stimulation (FES) for 16 weeks in men with SCI and an average baseline testosterone level above the cutoff for testosterone deficiency increased muscle mass, strength, bone quality, and basal metabolic rate while testosterone patches without exercise for 16 weeks produced no significant changes in these parameters. Testosterone patches for 12 months in men with SCI and testosterone deficiency also increased lean tissue mass (LTM) and resting energy expenditure (REE). In one study, men with TBI and testosterone deficiency receiving testosterone gel for eight weeks showed a non-statistically significant greater absolute change in functional independence measure (FIM) and grip strength compared to a placebo group. Testosterone therapy with exercise may help improve muscle mass, bone health, strength, energy expenditure, and cardiac health in men with SCI without major side effects. It is difficult to draw conclusions regarding the effects of testosterone therapy in men with TBI based on the limited available evidence. Further investigation is warranted to explore the relationship between testosterone therapy and recovery after SCI and TBI.
Collapse
Affiliation(s)
- Ryan J McLoughlin
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Zhiye Lu
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Amelie C Warneryd
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, USA
| | - Randel L Swanson
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA (Veteran Affairs) Medical Center, Philadelphia, USA.,Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| |
Collapse
|