1
|
Huang K, Luo L, Hong R, Zhao H, Li Y, Jiang Y, Feng Y, Fu Q, Zhou H, Li F. A novel model incorporating quantitative contrast-enhanced ultrasound into PI-RADSv2-based nomogram detecting clinically significant prostate cancer. Sci Rep 2024; 14:11083. [PMID: 38745087 PMCID: PMC11093975 DOI: 10.1038/s41598-024-61866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
The diagnostic accuracy of clinically significant prostate cancer (csPCa) of Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) is limited by subjectivity in result interpretation and the false positive results from certain similar anatomic structures. We aimed to establish a new model combining quantitative contrast-enhanced ultrasound, PI-RADSv2, clinical parameters to optimize the PI-RADSv2-based model. The analysis was conducted based on a data set of 151 patients from 2019 to 2022, multiple regression analysis showed that prostate specific antigen density, age, PI-RADSv2, quantitative parameters (rush time, wash-out area under the curve) were independent predictors. Based on these predictors, we established a new predictive model, the AUCs of the model were 0.910 and 0.879 in training and validation cohort, which were higher than those of PI-RADSv2-based model (0.865 and 0.821 in training and validation cohort). Net Reclassification Index analysis indicated that the new predictive model improved the classification of patients. Decision curve analysis showed that in most risk probabilities, the new predictive model improved the clinical utility of PI-RADSv2-based model. Generally, this new predictive model showed that quantitative parameters from contrast enhanced ultrasound could help to improve the diagnostic performance of PI-RADSv2 based model in detecting csPCa.
Collapse
Affiliation(s)
- Kaifeng Huang
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Li Luo
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Ruixia Hong
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Huai Zhao
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Ying Li
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Yaohuang Jiang
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Yujie Feng
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Qihuan Fu
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China
| | - Hang Zhou
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China.
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China.
| | - Fang Li
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China.
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, 181 Hangyulu, Shapingba, Chongqing, 400030, China.
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Li J, Zhu C, Yang S, Mao Z, Lin S, Huang H, Xu S. Non-Invasive Diagnosis of Prostate Cancer and High-Grade Prostate Cancer Using Multiparametric Ultrasonography and Serological Examination. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:600-609. [PMID: 38238199 DOI: 10.1016/j.ultrasmedbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES This study aimed to assess the efficacy of multiparametric ultrasonography (mpUS) combined with serological examination, as a non-invasive method, in detecting prostate cancer (PCa) or high-grade prostate cancer (HGPCa) respectively. METHODS A cohort of 245 individuals with clinically suspected PCa were enrolled. All subjects underwent a comprehensive evaluation, including basic data collection, serological testing, mpUS and prostate biopsy. Random Forest (RF) models were developed, and the mean area under the curve (AUC) in 100 cross-validations was used to assess the performance in distinguishing PCa from HGPCa. RESULTS mpUS features showed significant differences (p < 0.001) between the PCa and non-PCa groups, as well as between the HGPCa and low-grade prostate cancer (LGPCa) groups including prostate-specific antigen density (PSAD), transrectal real-time elastography (TRTE) and intensity difference (ID). The RF model, based on these features, demonstrated an excellent discriminative ability for PCa with a mean area under the curve (AUC) of 0.896. Additionally, another model incorporating free prostate-specific antigen (FPSA) and color Doppler flow imaging (CDFI) achieved a high accuracy in predicting HGPCa with a mean AUC of 0.830. The nomogram derived from these models exhibited excellent individualized prediction of PCa and HGPCa. CONCLUSION The RF models incorporating mpUS and serological variables achieved satisfactory accuracies in predicting PCa and HGPCa.
Collapse
Affiliation(s)
- Jia Li
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengwei Zhu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiping Yang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenshen Mao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuting Lin
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Huang
- Department of Urological, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Tang Y, Li X, Jiang Q, Zhai L. Diagnostic accuracy of multiparametric ultrasound in the diagnosis of prostate cancer: systematic review and meta-analysis. Insights Imaging 2023; 14:203. [PMID: 38001351 PMCID: PMC10673798 DOI: 10.1186/s13244-023-01543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/15/2023] [Indexed: 11/26/2023] Open
Abstract
OBJECTIVES Ultrasound (US) technology has recently made advances that have led to the development of modalities including elastography and contrast-enhanced ultrasound. The use of different US modalities in combination may increase the accuracy of PCa diagnosis. This study aims to assess the diagnostic accuracy of multiparametric ultrasound (mpUS) in the PCa diagnosis. METHODS Through September 2023, we searched through Cochrane CENTRAL, PubMed, Embase, Scopus, Web of Science, ClinicalTrial.gov, and Google Scholar for relevant studies. We used standard methods recommended for meta-analyses of diagnostic evaluation. We plot the SROC curve, which stands for summary receiver operating characteristic. To determine how confounding factors affected the results, meta-regression analysis was used. RESULTS Finally, 1004 patients from 8 studies that were included in this research were examined. The diagnostic odds ratio for PCa was 20 (95% confidence interval (CI), 8-49) and the pooled estimates of mpUS for diagnosis were as follows: sensitivity, 0.88 (95% CI, 0.81-0.93); specificity, 0.72 (95% CI, 0.59-0.83); positive predictive value, 0.75 (95% CI, 0.63-0.87); and negative predictive value, 0.82 (95% CI, 0.71-0.93). The area under the SROC curve was 0.89 (95% CI, 0.86-0.92). There was a significant heterogeneity among the studies (p < 0.01). According to meta-regression, both the sensitivity and specificity of mpUS in the diagnosis of clinically significant PCa (csPCa) were inferior to any PCa. CONCLUSION The diagnostic accuracy of mpUS in the diagnosis of PCa is moderate, but the accuracy in the diagnosis of csPCa is significantly lower than any PCa. More relevant research is needed in the future. CRITICAL RELEVANCE STATEMENT This study provides urologists and sonographers with useful data by summarizing the accuracy of multiparametric ultrasound in the detection of prostate cancer. KEY POINTS • Recent studies focused on the role of multiparametric ultrasound in the diagnosis of prostate cancer. • This meta-analysis revealed that multiparametric ultrasound has moderate diagnostic accuracy for prostate cancer. • The diagnostic accuracy of multiparametric ultrasound in the diagnosis of clinically significant prostate cancer is significantly lower than any prostate cancer.
Collapse
Affiliation(s)
- Yun Tang
- Department of Geriatric Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Longmen Hao Street Community Health Service Center, Nan'an District, Chongqing, 401336, China
| | - Xingsheng Li
- Department of Geriatric Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Lingyun Zhai
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
4
|
Calderone CE, Turner EM, Hayek OE, Summerlin D, West JT, Rais-Bahrami S, Galgano SJ. Contemporary Review of Multimodality Imaging of the Prostate Gland. Diagnostics (Basel) 2023; 13:diagnostics13111860. [PMID: 37296712 DOI: 10.3390/diagnostics13111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Tissue changes and the enlargement of the prostate, whether benign or malignant, are among the most common groups of diseases that affect men and can have significant impacts on length and quality of life. The prevalence of benign prostatic hyperplasia (BPH) increases significantly with age and affects nearly all men as they grow older. Other than skin cancers, prostate cancer is the most common cancer among men in the United States. Imaging is an essential component in the diagnosis and management of these conditions. Multiple modalities are available for prostate imaging, including several novel imaging modalities that have changed the landscape of prostate imaging in recent years. This review will cover the data relating to commonly used standard-of-care prostate imaging modalities, advances in newer technologies, and newer standards that impact prostate gland imaging.
Collapse
Affiliation(s)
- Carli E Calderone
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric M Turner
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Omar E Hayek
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David Summerlin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Janelle T West
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Soroush Rais-Bahrami
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O'Neal Comprehensive Cancer Center at UAB, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samuel J Galgano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O'Neal Comprehensive Cancer Center at UAB, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Zhang M, Meng Q, Feng L, Wang D, Qu C, Tian H, Jia J, Gao Q, Wang X. Contrast-enhanced ultrasound targeted versus conventional ultrasound guided systematic prostate biopsy for the accurate diagnosis of prostate cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e32404. [PMID: 36595877 PMCID: PMC9794341 DOI: 10.1097/md.0000000000032404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Conventional transrectal ultrasonography (TRUS) guided prostate biopsy is the standard method for accurate diagnosis of prostate cancer (PCa). However, the limitations of this technique in terms of missed diagnosis cannot be ignored. Based on previous studies, contrast-enhanced ultrasound (CEUS) may be able to more distinctly detect malignant lesions with increased microvessels. Therefore, to evaluate the diagnostic efficiency and clinical application prospects of CEUS-guided prostate biopsy for patients with suspected PCa, we performed a meta-analysis comparing CEUS-targeted with TRUS-guided systematic biopsy. METHODS A systematic search of PubMed, Web of Science, Embase and CNKI was performed up to March, 2022 for the relevant published studies. After data extraction and quality assessment, meta-analysis was performed using the RevMan 5.3 software. RESULTS The results showed that the overall sensitivity was higher for CEUS targeted biopsy than systematic biopsy (P = .03), so was the accuracy (P = .03). However, significant heterogeneity and inconsistent results from certain subgroup analyses challenged the validity of the results. Meanwhile, CEUS yielded a much higher sensitivity in patients with prostate specific antigen (PSA) level of 4 to 10 ng/mL (P = .007). On the other hand, the positive rate of each core (P < .001) and the detection rate of clinically significant PCa (P = .006) were significantly improved using CEUS. CONCLUSION CEUS showed the advantage of a higher detection rate of clinically significant PCa, which might provide more specific indications for subsequent treatment. More feasible, real-time data are required to confirm our findings.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
| | - Qingsong Meng
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
| | - Lulu Feng
- Institute of Pathology, Shijiazhuang Maternity and Child Heathcare Hospital, Shijiazhuang, Hebei, China
| | - Dongbin Wang
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
| | - Changbao Qu
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
| | - Hui Tian
- Department of Ultrasound, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
| | - Jianghua Jia
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
| | - Qinglu Gao
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
| | - Xin Wang
- Department of Urology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebie, China
- * Correspondence: Xin Wang, Department of Urology, Second Hospital of Hebei Medical University, No. 215, Heping Road, Shijiazhuang, Hebei Province, China (e-mail: )
| |
Collapse
|