1
|
Fei L, Hafeez R, Zhang J, Fu S, Xu Y, Hao L. Investigation of the mechanisms involved in the biocontrol activities of natural products from a marine soil bacterium against rice blast. PEST MANAGEMENT SCIENCE 2025; 81:3122-3135. [PMID: 39895525 PMCID: PMC12074626 DOI: 10.1002/ps.8684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Rice blast, caused by Pyricularia oryzae, is a devastating fungal disease threatening global rice production. Overreliance on chemical fungicides has raised environmental concerns and led to resistant strains, necessitating the development of sustainable alternatives. This study integrated marine microbiology and natural antifungal compounds to create eco-friendly alternatives to chemical fungicides for disease management. RESULTS We identified Pseudomonas aeruginosa R64 with broad-spectrum antimicrobial activity from mangrove soil in the Mai Po Nature Reserve. The R64 fermentation extract (RFE) exhibited multifaceted inhibition of P. oryzae, suppressing mycelial growth, conidiation, conidial germination and appressorial formation, while disturbing cell wall and membrane function. It also attenuated virulence by impairing appressorial penetration and invasive growth. Further chemical analysis identified phenazines and quinolines as the primary compounds in RFE, corroborated by PCR detection of corresponding phenazine biosynthetic gene clusters. Comparative bioassays with two main bioactive components of RFE, phenazine-1-carboxamide (PCN) and phenazine-1-carboxylic acid (PCA), against P. oryzae implicated PCN as the principal antifungal effector. RFE and PCN had higher efficacy than tricyclazole in P. oryzae growth inhibition, but were less effective than isoprothiolane. Furthermore, RFE and PCN displayed lower acute ecotoxicity to an environmental indicator organism than isoprothiolane, suggesting their potential as sustainable biopesticides for rice blast management. CONCLUSION Natural products from mangrove soil bacterium P. aeruginosa R64 inhibited key developmental and infection processes of P. oryzae, effectively reducing rice blast development. The promising disease inhibition and low ecotoxicity of mangrove-associated bacteria highlight their untapped potential for innovative, eco-friendly fungicide mining for sustainable agriculture. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Liwang Fei
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
- Center for Plant Environmental Sensing, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Rahila Hafeez
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Center for Plant Environmental Sensing, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Junliang Zhang
- School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Shiquan Fu
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Center for Plant Environmental Sensing, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| |
Collapse
|
2
|
Chen X, Li B. Analysis of Co-localized Biosynthetic Gene Clusters Identifies a Membrane-Permeabilizing Natural Product. JOURNAL OF NATURAL PRODUCTS 2024; 87:1694-1703. [PMID: 38949271 DOI: 10.1021/acs.jnatprod.3c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Combination therapy is an effective strategy to combat antibiotic resistance. Multiple synergistic antimicrobial combinations are produced by enzymes encoded in biosynthetic gene clusters (BGCs) that co-localize on the bacterial genome. This phenomenon led to the hypothesis that mining co-localized BGCs will reveal new synergistic combinations of natural products. Here, we bioinformatically identified 38 pairs of co-localized BGCs, which we predict to produce natural products that are related to known compounds, including polycyclic tetramate macrolactams (PoTeMs). We further showed that ikarugamycin, a PoTeM, increases the membrane permeability of Acinetobacter baumannii and Staphylococcus aureus, which suggests that ikarugamycin might be an adjuvant that facilitates the entry of other natural products. Our work outlines a promising avenue to discover synergistic combinations of natural products by mining bacterial genomes.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Liu H, Xu G, Guo B, Liu F. Old role with new feature: T2SS ATPase as a cyclic-di-GMP receptor to regulate antibiotic production. Appl Environ Microbiol 2024; 90:e0041824. [PMID: 38624198 PMCID: PMC11107153 DOI: 10.1128/aem.00418-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.
Collapse
Affiliation(s)
- Haofei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Li K, Ma C, Xiong C, Zhou X, Mao Y, Wang Y, Liu F. Unveiling the Role of Diffusible Signal Factor-Family Quorum Sensing Signals in Regulating Behavior of Xanthomonas and Lysobacter. PHYTOPATHOLOGY 2024; 114:512-520. [PMID: 37698468 DOI: 10.1094/phyto-07-23-0264-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Diffusible signal factor (DSF) family signals represent a unique group of quorum sensing (QS) chemicals that modulate a wide range of behaviors for bacteria to adapt to different environments. However, whether DSF-mediated QS signaling acts as a public language to regulate the behavior of biocontrol and pathogenic bacteria remains unknown. In this study, we present groundbreaking evidence demonstrating that RpfFXc1 or RpfFOH11 could be a conserved DSF-family signal synthase in Xanthomonas campestris or Lysobacter enzymogenes. Interestingly, we found that both RpfFOH11 and RpfFXc1 have the ability to synthesize DSF and BDSF signaling molecules. DSF and BDSF positively regulate the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF) in L. enzymogenes. Finally, we show that RpfFXc1 and RpfFOH11 have similar functions in regulating HSAF production in L. enzymogenes, as well as the virulence, synthesis of virulence factors, biofilm formation, and extracellular polysaccharide production in X. campestris. These findings reveal a previously uncharacterized mechanism of DSF-mediated regulation in both biocontrol and pathogenic bacteria.
Collapse
Affiliation(s)
- Kaihuai Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Chaoyun Ma
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Chunlan Xiong
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xue Zhou
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yahui Mao
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
5
|
Hou R, Li K, Guo B, Zhao Y, Li C, Tang B, Sun W, Wang B, Chen W, Sheng C, Kan J, Zhao Y, Liu F. Antifungal Compound from the Predatory Bacterium Lysobacter enzymogenes Inhibits a Plant Pathogenic Fungus by Targeting the AAA ATPase VpVeb1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15003-15016. [PMID: 37812568 DOI: 10.1021/acs.jafc.3c06262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Heat-stable antifungal factor (HSAF) isolated from Lysobacter enzymogenes is considered a potential biocontrol agent. However, the target of HSAF in phytopathogenic fungi remains unclear. In this study, we investigated the target of HSAF in Valsa pyri that causes fatal pear Valsa canker. Thirty-one HSAF-binding proteins were captured and identified by surface plasmon resonance (SPR) and high-performance liquid chromatography-mass spectrometry (LC-MS/MS), and 11 deletion mutants were obtained. Among these mutants, only ΔVpVEB1 showed decreased sensitivity to HSAF. Additionally, ΔVpVEB1 exhibited significantly reduced virulence in V. pyri. Molecular docking and SPR results revealed that HSAF bound to threonine 569 and glycine 570 of VpVeb1, which are crucial for AAA ATPase activity. Another study showed that HSAF could decrease the ATPase activity of VpVeb1, leading to the reduced virulence of V. pyri. Taken together, this study first identified the potential target of HSAF in fungi. These findings will help us better understand the model of action of HSAF to fungi.
Collapse
Affiliation(s)
- Rongxian Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kaihuai Li
- Department of Plant Pathology/Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Baodian Guo
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Yangyang Zhao
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Chaohui Li
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Weibo Sun
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Wenchan Chen
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Cong Sheng
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Jialiang Kan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Department of Plant Pathology/Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| |
Collapse
|
6
|
Tang B, Wang B, Xu Z, Hou R, Zhang M, Chen X, Liu Y, Liu F. Iron ions regulate antifungal HSAF biosynthesis in Lysobacter enzymogenes by manipulating the DNA-binding affinity of the ferric uptake regulator (Fur). Microbiol Spectr 2023; 11:e0061723. [PMID: 37737630 PMCID: PMC10581043 DOI: 10.1128/spectrum.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/05/2023] [Indexed: 09/23/2023] Open
Abstract
Heat-stable antifungal factor (HSAF), produced by Lysobacter enzymogenes OH11, is regarded as a potential biological pesticide due to its broad-spectrum antifungal activity and novel mode of action. However, the current production of HSAF is low and cannot meet the requirements for large-scale production. Herein, we discovered that iron ions greatly promoted HSAF production, and the ferric uptake regulator (Fur) was involved in this regulatory process. Fur was also found to participate in the regulation of iron homeostasis in OH11 via the classic inhibition mechanism of Holo-Fur. Furthermore, Fur was collectively observed to directly bind to the promoter of the HSAF biosynthesis gene, and its DNA-binding affinity was attenuated by the addition of iron ions in vitro and in vivo. Its regulatory mechanism followed the uncommon inhibition mechanism of Apo-Fur. In summary, Fur exhibited a bidirectional regulatory mechanism in OH11. This study reveals a novel regulatory mechanism whereby Fur upregulates the biosynthesis of secondary metabolites. These findings contribute to the improvement of HSAF production and may guide its development into biological pesticides. IMPORTANCE HSAF possesses potent and broad antifungal activity with a novel mode of action. The HSAF yield is critical for fermentation production. In this study, iron ions were found to increase HSAF production, and the specific mechanism was elaborated. These results provide theoretical support for genetic transformation to improve HSAF yield, supporting its development into biological pesticides.
Collapse
Affiliation(s)
- Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhengjiang, Jiangsu, China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Zhizhou Xu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rouxian Hou
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Xian Chen
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Youzhou Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
7
|
Sun W, Tang B, Dong L, Xu J, Zhao Y, Liu F. A novel and high-efficient method for the preparation of heat-stable antifungal factor from Lysobacter enzymogenes by high-speed counter-current chromatography. Front Microbiol 2023; 14:1227244. [PMID: 37645219 PMCID: PMC10461446 DOI: 10.3389/fmicb.2023.1227244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Heat-stable antifungal factor (HSAF) produced by the biocontrol bacterium Lysobacter enzymogenes shows considerable antifungal activity and has broad application potential in the agricultural and medical fields. There is a great demand for pure HSAF compounds in academic or industrial studies. However, an efficient preparation method that produces a high yield and high purity of HSAF is lacking, limiting the development of HSAF as a new drug. In the present study, high-speed counter-current chromatography (HSCCC) combined with column chromatography was successfully developed for the separation and preparation of HSAF from the crude extract of L. enzymogenes OH11. The crude extract was obtained by macroporous resin adsorption and desorption, and the main impurities were partly removed by ultraviolet light (254 nm) and gel filtration (Sephadex LH-20). In the HSCCC procedure, the selected suitable two-phase solvent system (n-hexane/ethyl acetate/methanol/water = 3:5:4:5, v/v, the lower phase added with 0.1% TFA) with a flow rate of 2.0 mL/min and a sample loading size of 100 mg was optimized for the separation. As a result, a total of 42 mg HSAF with a purity of 97.6% and recovery of 91.7% was yielded in one separation. The structure elucidation based on HR-TOF-MS, 1H and 13C NMR, and antifungal activities revealed that the isolated compound was unambiguously identified as HSAF. These results are helpful for separating and producing HSAF at an industrial scale, and they further demonstrate that HSCCC is a useful tool for isolating bioactive constituents from beneficial microorganisms.
Collapse
Affiliation(s)
- Weibo Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liangliang Dong
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
8
|
Liu X, Jiang X, Sun H, Du J, Luo Y, Huang J, Qin L. Evaluating the Mode of Antifungal Action of Heat-Stable Antifungal Factor (HSAF) in Neurospora crassa. J Fungi (Basel) 2022; 8:jof8030252. [PMID: 35330254 PMCID: PMC8951606 DOI: 10.3390/jof8030252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/25/2023] Open
Abstract
Heat-stable antifungal factor (HSAF) isolated from Lysobacter enzymogenes has shown a broad-spectrum of antifungal activities. However, little is known about its mode of action. In this study, we used the model filamentous fungus Neurospora crassa to investigate the antifungal mechanism of HSAF. We first used HSAF to treat the N. crassa strain at different time points. Spore germination, growth phenotype and differential gene expression analysis were conducted by utilizing global transcriptional profiling combined with genetic and physiological analyses. Our data showed that HSAF could significantly inhibit the germination and aerial hyphae growth of N. crassa. RNA-seq analysis showed that a group of genes, associated with cell wall formation and remodeling, were highly activated. Screening of N. crassa gene deletion mutants combined with scanning electron microscopic observation revealed that three fungal cell wall integrity-related genes played an important role in the interaction between N. crassa and L. enzymogens. In addition, Weighted Gene Co-Expression Network Analysis (WGCNA), accompanied by confocal microscopy observation revealed that HSAF could trigger autophagy-mediated degradation and eventually result in cell death in N. crassa. The findings of this work provided new insights into the interactions between the predatory Lysobacter and its fungal prey.
Collapse
Affiliation(s)
- Xiaodong Liu
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; (X.L.); (X.J.); (H.S.); (J.D.); (Y.L.)
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xianzhang Jiang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; (X.L.); (X.J.); (H.S.); (J.D.); (Y.L.)
| | - Haowen Sun
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; (X.L.); (X.J.); (H.S.); (J.D.); (Y.L.)
| | - Jiawen Du
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; (X.L.); (X.J.); (H.S.); (J.D.); (Y.L.)
| | - Yuhang Luo
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; (X.L.); (X.J.); (H.S.); (J.D.); (Y.L.)
| | - Jianzhong Huang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; (X.L.); (X.J.); (H.S.); (J.D.); (Y.L.)
- Correspondence: (J.H.); (L.Q.)
| | - Lina Qin
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China; (X.L.); (X.J.); (H.S.); (J.D.); (Y.L.)
- Correspondence: (J.H.); (L.Q.)
| |
Collapse
|
9
|
The predatory soil bacterium Lysobacter reprograms quorum sensing system to regulate antifungal antibiotic production in a cyclic-di-GMP-independent manner. Commun Biol 2021; 4:1131. [PMID: 34561536 PMCID: PMC8463545 DOI: 10.1038/s42003-021-02660-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Soil bacteria often harbour various toxins to against eukaryotic or prokaryotic. Diffusible signal factors (DSFs) represent a unique group of quorum sensing (QS) chemicals that modulate interspecies competition in bacteria that do not produce antibiotic-like molecules. However, the molecular mechanism by which DSF-mediated QS systems regulate antibiotic production for interspecies competition remains largely unknown in soil biocontrol bacteria. In this study, we find that the necessary QS system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase (PDE), regulates the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF), which does not appear to depend on the enzymatic activity. Interestingly, we show that RpfG interacts with three hybrid two-component system (HyTCS) proteins, HtsH1, HtsH2, and HtsH3, to regulate HSAF production in Lysobacter. In vitro studies show that each of these proteins interacted with RpfG, which reduced the PDE activity of RpfG. Finally, we show that the cytoplasmic proportions of these proteins depended on their phosphorylation activity and binding to the promoter controlling the genes implicated in HSAF synthesis. These findings reveal a previously uncharacterized mechanism of DSF signalling in antibiotic production in soil bacteria. Li et al shows that the quorum sensing system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase, also regulates the biosynthesis of an antifungal factor. They show that RpfG regulates the production of HSAF through a direct interaction with three hybrid two component system (HyTCS) proteins, providing insights into the antifungal defence in soil bacteria.
Collapse
|
10
|
Lin L, Xu K, Shen D, Chou SH, Gomelsky M, Qian G. Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ Microbiol 2021; 23:5704-5715. [PMID: 34288318 DOI: 10.1111/1462-2920.15674] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
Bacteria interact with fungi in a variety of ways to inhibit fungal growth, while the underlying mechanisms remain only partially characterized. The plant-beneficial Bacillus and Pseudomonas species are well-known antifungal biocontrol agents, whereas Lysobacter are far less studied. Members of Lysobacter are easy to grow in fermenters and are safe to humans, animals and plants. These environmentally ubiquitous bacteria use a diverse arsenal of weapons to prey on other microorganisms, including fungi and oomycetes. The small molecular toxins secreted by Lysobacter represent long-range weapons effective against filamentous fungi. The secreted hydrolytic enzymes act as intermediate-range weapons against non-filamentous fungi. The contact-dependent killing devices are proposed to work as short-range weapons. We describe here the structure, biosynthetic pathway, action mode and applications of one of the best-characterized long-range weapons, the heat-stable antifungal factor (HSAF) produced by Lysobacter enzymogenes. We discuss how the flagellar type III secretion system has evolved into an enzyme secretion machine for the intermediate-range antifungal weapons. We highlight an intricate mechanism coordinating the production of the long-range weapon, HSAF and the proposed contact-dependent killing device, type VI secretion system. We also overview the regulatory mechanisms of HSAF production involving specific transcription factors and the bacterial second messenger c-di-GMP.
Collapse
Affiliation(s)
- Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Kangwen Xu
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Tang B, Wu L, Wang J, Sun W, Zhao Y, Liu F. Separation of Heat-Stable Antifungal Factor From Lysobacter enzymogenes Fermentation Broth via Photodegradation and Macroporous Resin Adsorption. Front Microbiol 2021; 12:663065. [PMID: 34054766 PMCID: PMC8155363 DOI: 10.3389/fmicb.2021.663065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Heat-stable antifungal factor (HSAF) is produced by the fermentation of Lysobacter enzymogenes, which is known for its broad-spectrum antifungal activity and novel mode of action. However, studies on the separation of HSAF have rarely been reported. Herein, alteramide B (the main byproduct) was removed firstly from the fermentation broth by photodegradation to improve the purity of HSAF. Then, the separation of HSAF via adsorption by macroporous adsorption resins (MARs) was evaluated and NKA resin showed highest static adsorption and desorption performances. After optimizing the static and dynamic adsorption characteristics, the content of HSAF in the purified product increased from 8.67 ± 0.32% (ethyl acetate extraction) to 31.07 ± 1.12% by 3.58-fold. These results suggest that the developed strategy via photodegradation and macroporous resin adsorption is an effective process for the separation of HSAF, and it is also a promising method for the large-scale preparation of HSAF for agricultural applications.
Collapse
Affiliation(s)
- Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang, China
| | - Lingtian Wu
- College of Biological and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Jinzi Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weibo Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhengjiang, China
| |
Collapse
|
12
|
Li C, Tang B, Cao S, Bao Y, Sun W, Zhao Y, Liu F. Biocontrol ability and action mechanism of dihydromaltophilin against Colletotrichum fructicola causing anthracnose of pear fruit. PEST MANAGEMENT SCIENCE 2021; 77:1061-1069. [PMID: 33012119 DOI: 10.1002/ps.6122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/03/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Anthracnose caused by Colletotrichum fructicola is one of the most important diseases in pear fruit, resulting in huge economic losses. Public awareness of protecting the environment and food safety, together with pathogen resistance to many key fungicides have led to an urgent need to develop alternative strategies for controlling fruit diseases. Here, the antifungal activity of a natural product, dihydromaltophilin [heat-stable antifungal factor (HSAF)], against C. fructicola in vitro and in vivo was investigated to determine its efficacy for anthracnose management. RESULTS HSAF exhibited pronounced antifungal activity against in vitro mycelial growth of C. fructicola, with a half-inhibition concentration of 0.43 mg L-1 . Hyphae treated with HSAF showed defects such as hyperbranching, swelling and depolarized growth. Conidia germination in the pathogen was inhibited by HSAF in a dose-dependent manner. In the presence of 4 mg L-1 HSAF, conidia germination was significantly delayed, and germ tube growth was inhibited. HSAF at 8 mg L-1 completely blocked conidia germination in C. fructicola. In addition, HSAF disrupted coordination of cytokinesis with growth and nuclear division, induced reactive oxygen species production in conidia, and damaged the integrity of the conidia cell wall. Moreover, an in vivo test confirmed that 50 mg L-1 HSAF significantly reduced the development of anthracnose decay in pear fruit caused by C. fructicola. CONCLUSION HSAF was highly effective in reducing pear anthracnose caused by C. fructicola and has great potential to become a new type of fruit preservative.
Collapse
Affiliation(s)
- Chaohui Li
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Bao
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weibo Sun
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Tang B, Chen X, Laborda P, Liu F. Efficient direct preparation of antifungal Alteramide B from Lysobacter enzymogenes fermentation broth by macroporous resin adsorption. BIORESOURCE TECHNOLOGY 2021; 319:124220. [PMID: 33039845 DOI: 10.1016/j.biortech.2020.124220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Alteramide B (ATB) is an antifungal metabolite produced by Lysobacter enzymogenes. However, its separation method has not been explored. This study attempted to directly adsorb ATB from fermentation broth using macroporous adsorption resins (MARs) NKA resin exhibited better adsorption as well as desorption capacities. The static and dynamic adsorption characteristics were assessed to determine the following optimal separation conditions: initial fermentation broth with a pH of 12.0, 2 BV/h flow rate, 8 BV loading volume, and 6 BV 80% aqueous ethanol for elution. After a single treatment, ATB content in the final product was higher by 4.51-fold (i.e, from 12.72 ± 1.21% to 57.35 ± 3.46%), resulting in a recovery yield of 86.20 ± 4.47%. In addition, NKA resin showed superior reusability within eight cycles of adsorption/desorption. The developed method is thus a simple, efficient, and economical process for ATB separation.
Collapse
Affiliation(s)
- Bao Tang
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xian Chen
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
14
|
Zhang B, Zhang YH, Chen Y, Chen K, Jiang SX, Huang K, Liu ZQ, Zheng YG. Enhanced AmB Production in Streptomyces nodosus by Fermentation Regulation and Rational Combined Feeding Strategy. Front Bioeng Biotechnol 2020; 8:597. [PMID: 32760700 PMCID: PMC7373727 DOI: 10.3389/fbioe.2020.00597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Amphotericin B is a clinically important polyene macrolide antibiotic with a broad-spectrum antifungal activity. In this work, the addition of key precursors and differential metabolites, combined with staged fermentation process control strategies, was carried out to improve AmB production. Rationally designed addition strategies were proposed as follows: 4 mg/L isopropanol, 1 mM alanine, 1 g/L pyruvate, and 0.025 g/L nicotinamide were supplemented at 24 h. The AmB titer was ultimately enhanced to 6.63 g/L, with 28.5% increase in shake flasks fermentation. To further promote the biosynthesis of AmB, different glucose feeding strategies were investigated and the highest AmB titer (15.78 g/L) was obtained by constant speed fed-batch fermentation in a 5-L fermentor. Subsequently, compared with the batch fermentation (9.89 g/L), a novel combined feeding strategy was ultimately developed to improve the production of AmB by 85.9%, reaching 18.39 g/L that is the highest titer of AmB ever reported so far, in which the optimized components were fed at 24 h and the staged fermentation regulation strategies were used simultaneously. Moreover, the ratio of co-metabolite AmA decreased by 32.3%, from 3.1 to 2.1%. Through the detection of extracellular organic acids, the changes in α-ketoglutaric acid, pyruvate, and citric acid concentrations were identified as the most flexible metabolite nodes to further clarify the potential mechanism under different fermentation regulation strategies. These results demonstrated that the strategies above may provide new guidance for the industrial-scale production of AmB.
Collapse
Affiliation(s)
- Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Han Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kai Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sheng-Xian Jiang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kai Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
15
|
Hao L, Wang Y, Chen X, Zheng X, Chen S, Li S, Zhang Y, Xu Y. Exploring the Potential of Natural Products From Mangrove Rhizosphere Bacteria as Biopesticides Against Plant Diseases. PLANT DISEASE 2019; 103:2925-2932. [PMID: 31449436 DOI: 10.1094/pdis-11-18-1958-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With increasing concerns of the environmental problems associated with current fungicide application, investigation of alternative, environmentally compatible biopesticides for plant disease management is needed. A total of 113 strains associated with Acanthus ilicifolius Linn in the Maipo Reserve, Hong Kong, were isolated and identified. In vitro assay with crude extracts of bacterial fermentation cultures identified ∼26% of the isolates producing antimicrobial compounds against a variety of agriculturally important phytopathogens. Selected crude extracts with inhibition to Colletotrichum fructicola and Magnaporthe oryzae growth significantly suppressed anthracnose and rice blast development in pear fruits and rice plants, respectively, when applied at 50 μg ml-1. Furthermore, 10 of 14 selected crude extracts with good antimicrobial activities had no significant differences in toxicity to the genus Chlorella compared with the control when used at 25 μg ml-1, whereas Amistar Top and Mancozeb completely killed the alga under the same concentration. These data illustrate the potential of natural products from mangrove rhizosphere bacteria in future agricultural application.
Collapse
Affiliation(s)
- Lingyun Hao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xinqi Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoli Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Si Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Xu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
16
|
Hao L, Zheng X, Wang Y, Li S, Shang C, Xu Y. Inhibition of Tomato Early Blight Disease by Culture Extracts of a Streptomyces puniceus Isolate from Mangrove Soil. PHYTOPATHOLOGY 2019; 109:1149-1156. [PMID: 30794487 DOI: 10.1094/phyto-12-18-0444-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigates the potential of natural products derived from a mangrove rhizosphere bacterium in tomato early blight management. A Streptomyces puniceus strain L75 was isolated from the rhizosphere of Acanthus ilicifolius Linn in the Mai Po Reserve, Hong Kong. The crude ethyl acetate (EA) extract of L75 fermentation cultures has broad-spectrum antifungal bioactivities. L75 EA extract was significantly more effective in Alternaria solani growth inhibition at 25 μg/ml or lower compared with Mancozeb, with no observable negative impacts on tomato leaves or root development. Furthermore, L75 EA extract had significantly lower aquatic toxicity than Mancozeb at the same concentrations. L75 EA extract targets germ tube elongation of A. solani conidia, with a fungistatic mode of action. Liquid chromatography-quadrupole time-of-flight mass spectrometry analysis identified two possible antifungal compounds, Alteramide A and the Heat-Stable Antifungal Factor, which together contribute partially to the bioactivity of L75 EA extract. On detached tomato leaves, coinoculation of A. solani with L75 EA extract of 50, 25, or 5 μg/ml reduced diseased areas by ∼98, ∼90, and ∼48%, respectively, relative to the control after 5 days. This study demonstrates the potential of natural products from mangrove rhizosphere bacteria in agricultural applications.
Collapse
Affiliation(s)
- Lingyun Hao
- 1 Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xiaoli Zheng
- 1 Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yu Wang
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Shuangfei Li
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Chenjing Shang
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ying Xu
- 1 Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
- 2 Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|