1
|
Dadhwal G, Samy H, Bouvette J, El-Azzouzi F, Dagenais P, Legault P. Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3'-end modifications. Cell Mol Life Sci 2024; 81:53. [PMID: 38261114 PMCID: PMC10806991 DOI: 10.1007/s00018-023-05090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.
Collapse
Affiliation(s)
- Gunjan Dadhwal
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Hebatallah Samy
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Jonathan Bouvette
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Department, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
| | - Fatima El-Azzouzi
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Biochemistry Department, Wake Forest Biotech Place, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA
| | - Pierre Dagenais
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Pascale Legault
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
2
|
Huang W, Sakuma S, Tottori N, Sugano SS, Yamanishi Y. Viscosity-aided electromechanical poration of cells for transfecting molecules. LAB ON A CHIP 2022; 22:4276-4291. [PMID: 36263697 DOI: 10.1039/d2lc00628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell poration technologies offer opportunities not only to understand the activities of biological molecules but also to investigate genetic manipulation possibilities. Unfortunately, transferring large molecules that can carry huge genomic information is challenging. Here, we demonstrate electromechanical poration using a core-shell-structured microbubble generator, consisting of a fine microelectrode covered with a dielectric material. By introducing a microcavity at its tip, we could concentrate the electrical field with the application of electric pulses and generate microbubbles for electromechanical stimulation of cells. Specifically, the technology enables transfection with molecules that are thousands of kDa even into osteoblasts and Chlamydomonas, which are generally considered to be difficult to inject. Notably, we found that the transfection efficiency can be enhanced by adjusting the viscosity of the cell suspension, which was presumably achieved by remodeling of the membrane cytoskeleton. The applicability of the approach to a variety of cell types opens up numerous emerging gene engineering applications.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shinya Sakuma
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naotomo Tottori
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan.
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Silva FD, Oliveira JE, Freire RP, Suzuki MF, Soares CR, Bartolini P. Expression of glycosylated human prolactin in HEK293 cells and related N-glycan composition analysis. AMB Express 2019; 9:135. [PMID: 31468229 PMCID: PMC6715758 DOI: 10.1186/s13568-019-0856-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/12/2019] [Indexed: 11/11/2022] Open
Abstract
Prolactin (PRL) is a hormone produced by the pituitary gland with innumerable functions, such as lactation, reproduction, osmotic and immune regulation. The present work describes the synthesis of hPRL in human embryonic kidney (HEK293) cells, transiently transfected with the pcDNA-3.4-TOPO® vector carrying the hPRL cDNA. A concentration of ~ 20 mg/L, including glycosylated (G-hPRL) and non-glycosylated (NG-hPRL) human prolactin, was obtained, with ~ 19% of G-hPRL, which is higher than that observed in CHO-derived hPRL (~ 10%) and falling within the wide range of 5–30% reported for pituitary-derived hPRL. N-Glycoprofiling analysis of G-hPRL provided: (i) identification of each N-glycan structure and relative intensity; (ii) average N-glycan mass; (iii) molecular mass of the whole glycoprotein and relative carbohydrate mass fraction; (iv) mass fraction of each monosaccharide. The data obtained were compared to pituitary- and CHO-derived G-hPRL. The whole MM of HEK-derived G-hPRL, determined via MALDI–TOF-MS, was 25,123 Da, which is 0.88% higher than pit- and 0.61% higher than CHO-derived G-hPRL. The main difference with the latter was due to sialylation, which was ~ sevenfold lower, but slightly higher than that observed in native G-hPRL. The “in vitro” bioactivity of HEK-G-hPRL was ~ fourfold lower than that of native G-hPRL, with which it had in common also the number of N-glycan structures.
Collapse
|