1
|
Wynne E, Yoon J, Park D, Cui M, Morris C, Lee J, Wang Z, Yoon S, Han J. Regeneration of Spent Culture Media for Sustainable and Continuous mAb Production via Ion Concentration Polarization. Biotechnol Bioeng 2025; 122:373-381. [PMID: 39558516 PMCID: PMC11718426 DOI: 10.1002/bit.28888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
In modern bioprocessing, cell culture media is one of the most significant cost drivers, yet the nutrients and other critical factors in the media are often not fully utilized. With the renewed emphasis on reducing the cost of bioprocessing, there is much interest in reducing the overall use of cell culture media. In this work, we introduce a mesoscale microfluidic separation device based on the ion concentration polarization (ICP) process to regenerate the spent media for reuse by removing critical waste products from the cell culture that are known to inhibit the growth of the cells. We demonstrated that up to 75% of spent culture media can be regenerated and reused without affecting the cell viability. A detailed analysis of the materials consumed during antibody production indicated that one could improve the water process mass intensity by up to 33% by regenerating and recycling the media. Given that ICP separation systems have already been scaled up to support large-volume processing, it would be feasible to deploy this technology for manufacturing scale bioreactors (e.g., 50 L perfusion culture of CHO cells), reducing the overall operation cost and water use.
Collapse
Affiliation(s)
- Eric Wynne
- Department of Electrical Engineering and Computer Science, College of EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Junghyo Yoon
- Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Dohyun Park
- Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mingyang Cui
- Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Caitlin Morris
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Jaeweon Lee
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Zhao Wang
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Seongkyu Yoon
- Department of Chemical EngineeringUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, College of EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological Engineering, College of EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
2
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
3
|
Khan H, Khanam A, Khan AA, Ahmad R, Husain A, Habib S, Ahmad S, Moinuddin. The complex landscape of intracellular signalling in protein modification under hyperglycaemic stress leading to metabolic disorders. Protein J 2024; 43:425-436. [PMID: 38491250 DOI: 10.1007/s10930-024-10191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Hyperglycaemia is a life-threatening risk factor that occurs in both chronic and acute phases and has been linked to causing injury to many organs. Protein modification was triggered by hyperglycaemic stress, which resulted in pathogenic alterations such as impaired cellular function and tissue damage. Dysregulation in cellular function increases the condition associated with metabolic disorders, including cardiovascular diseases, nephropathy, retinopathy, and neuropathy. Hyperglycaemic stress also increases the proliferation of cancer cells. The major areas of experimental biomedical research have focused on the underlying mechanisms involved in the cellular signalling systems involved in diabetes-associated chronic hyperglycaemia. Reactive oxygen species and oxidative stress generated by hyperglycaemia modify many intracellular signalling pathways that result in insulin resistance and β-cell function degradation. The dysregulation of post translational modification in β cells is clinically associated with the development of diabetes mellitus and its associated diseases. This review will discuss the effect of hyperglycaemic stress on protein modification and the cellular signalling involved in it. The focus will be on the significant molecular changes associated with severe metabolic disorders.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India.
| | - Afreen Khanam
- Department of Biotechnology and Life Sciences, Mangalayatan University, Aligarh, India
| | - Adnan Ahmad Khan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India
| | - Arbab Husain
- Department of Biotechnology and Life Sciences, Mangalayatan University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, 202002, Aligarh, India
| |
Collapse
|
4
|
Cordova LT, Dahodwala H, Elliott KS, Baik J, Odenewelder DC, Nmagu D, Skelton BA, Uy L, Klaubert SR, Synoground BF, Chitwood DG, Dhara VG, Naik HM, Morris CS, Yoon S, Betenbaugh M, Coffman J, Swartzwelder F, Gillmeister MP, Harcum SW, Lee KH. Generation of reference cell lines, media, and a process platform for CHO cell biomanufacturing. Biotechnol Bioeng 2023; 120:715-725. [PMID: 36411514 DOI: 10.1002/bit.28290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Due to the favorable attributes of Chinese hamster ovary (CHO) cells for therapeutic proteins and antibodies biomanufacturing, companies generate proprietary cells with desirable phenotypes. One key attribute is the ability to stably express multi-gram per liter titers in chemically defined media. Cell, media, and feed diversity has limited community efforts to translate knowledge. Moreover, academic, and nonprofit researchers generally cannot study "industrially relevant" CHO cells due to limited public availability, and the time and knowledge required to generate such cells. To address these issues, a university-industrial consortium (Advanced Mammalian Biomanufacturing Innovation Center, AMBIC) has acquired two CHO "reference cell lines" from different lineages that express monoclonal antibodies. These reference cell lines have relevant production titers, key performance outcomes confirmed by multiple laboratories, and a detailed technology transfer protocol. In commercial media, titers over 2 g/L are reached. Fed-batch cultivation data from shake flask and scaled-down bioreactors is presented. Using productivity as the primary attribute, two academic sites aligned with tight reproducibility at each site. Further, a chemically defined media formulation was developed and evaluated in parallel to the commercial media. The goal of this work is to provide a universal, industrially relevant CHO culture platform to accelerate biomanufacturing innovation.
Collapse
Affiliation(s)
- Lauren T Cordova
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Hussain Dahodwala
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| | - Kathryn S Elliott
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Jongyoun Baik
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | | | - Douglas Nmagu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Bradley A Skelton
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Lisa Uy
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | | | - Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Harnish Mukesh Naik
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caitlin S Morris
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, Delaware, USA
| |
Collapse
|
5
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
6
|
Xu WJ, Lin Y, Mi CL, Pang JY, Wang TY. Progress in fed-batch culture for recombinant protein production in CHO cells. Appl Microbiol Biotechnol 2023; 107:1063-1075. [PMID: 36648523 PMCID: PMC9843118 DOI: 10.1007/s00253-022-12342-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
Nearly 80% of the approved human therapeutic antibodies are produced by Chinese Hamster Ovary (CHO) cells. To achieve better cell growth and high-yield recombinant protein, fed-batch culture is typically used for recombinant protein production in CHO cells. According to the demand of nutrients consumption, feed medium containing multiple components in cell culture can affect the characteristics of cell growth and improve the yield and quality of recombinant protein. Fed-batch optimization should have a connection with comprehensive factors such as culture environmental parameters, feed composition, and feeding strategy. At present, process intensification (PI) is explored to maintain production flexible and meet forthcoming demands of biotherapeutics process. Here, CHO cell culture, feed composition in fed-batch culture, fed-batch culture environmental parameters, feeding strategies, metabolic byproducts in fed-batch culture, chemostat cultivation, and the intensified fed-batch are reviewed. KEY POINTS: • Fed-batch culture in CHO cells is reviewed. • Fed-batch has become a common technology for recombinant protein production. • Fed batch culture promotes recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Wen-Jing Xu
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Pharmacy, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Yan Lin
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.412990.70000 0004 1808 322XSchool of Nursing, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Chun-Liu Mi
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Jing-Ying Pang
- grid.412990.70000 0004 1808 322XSchool of the First Clinical College, Xinxiang Medical University, Xinxiang, 453000 Henan China
| | - Tian-Yun Wang
- grid.412990.70000 0004 1808 322XInternational Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003 Henan China ,grid.495434.b0000 0004 1797 4346School of medicine, Xinxiang University, Xinxiang, 453003 Henan China
| |
Collapse
|
7
|
Savizi ISP, Maghsoudi N, Motamedian E, Lewis NE, Shojaosadati SA. Valine feeding reduces ammonia production through rearrangement of metabolic fluxes in central carbon metabolism of CHO cells. Appl Microbiol Biotechnol 2022; 106:1113-1126. [PMID: 35044498 DOI: 10.1007/s00253-021-11755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/02/2022]
Abstract
Ammonia is a toxic byproduct of CHO cell metabolism, which inhibits cell growth, reduces cell viability, alters glycosylation, and decreases recombinant protein productivity. In an attempt to minimize the ammonium accumulation in cell culture media, different amino acids were added individually to the culture medium before the production phase to alleviate the negative effects of ammonium on cell culture performance. Among all the amino acids examined in this study, valine showed the most positive impact on CHO cell culture performance. When the cultured CHO cells were fed with 5 mM valine, EPO titer was increased by 25% compared to the control medium, and ammonium and lactate production were decreased by 23 and 26%, respectively, relative to the control culture. Moreover, the sialic acid content of the EPO protein in valine-fed culture was higher than in the control culture, most likely because of the lower ammonium concentration. Flux balance analysis (FBA) results demonstrated that the citric acid cycle was enriched by valine feeding. The measurement of TCA cycle activity supported this finding. The analysis revealed that there might be a link between promoting tricarboxylic acid (TCA) cycle metabolism in valine-fed culture and reduction in lactate and ammonia accumulation. Furthermore, in valine-fed culture, FBA outcomes showed that alanine was excreted into the medium as the primary mechanism for reducing ammonium concentration. It was predicted that the elevated TCA cycle metabolism was concurrent with an increment in recombinant protein production. Taken together, our data demonstrate that valine addition could be an effective strategy for mitigating the negative impacts of ammonium and enhancing glycoprotein production in both quality and quantity. KEY POINTS: • Valine feeding can mitigate the negative impacts of ammonia on CHO cell growth. • Valine addition assists the ammonia removal mechanism by enriching the TCA cycle. • Ammonia is removed from the media through alanine excretion in valine-fed culture.
Collapse
Affiliation(s)
- Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ehsan Motamedian
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, USA.,School of Medicine, Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, USA.,Department of Pediatrics, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran.
| |
Collapse
|
8
|
Klaubert SR, Chitwood DG, Dahodwala H, Williamson M, Kasper R, Lee KH, Harcum SW. Method to transfer Chinese hamster ovary (CHO) batch shake flask experiments to large-scale, computer-controlled fed-batch bioreactors. Methods Enzymol 2021; 660:297-320. [PMID: 34742394 DOI: 10.1016/bs.mie.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chinese hamster ovary (CHO) cell cultures in industry are most commonly conducted as fed-batch cultures in computer-controlled bioreactors, though most preliminary studies are conducted in fed-batch shake flasks. To improve comparability between bioreactor studies and shake flask studies, shake flask studies should be conducted as fed-batch. However, the smaller volumes and reduced control in shake flasks can impact pH and aeration, which leads to performance differences. Planning and awareness of these vessel and control differences can assist with experimental design as well as troubleshooting. This method will highlight several of the configuration and control issues that should be considered during the transitions from batch to fed-batch and shake flasks to bioreactors, as well as approaches to mitigate the differences. Furthermore, if significant differences occur between bioreactor and shake flask studies, approaches will be presented to isolate the main contributors for these differences.
Collapse
Affiliation(s)
- Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Dylan G Chitwood
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Hussain Dahodwala
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE, United States
| | - Madison Williamson
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Rachel Kasper
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States
| | - Kelvin H Lee
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States; Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, United States.
| |
Collapse
|
9
|
Synoground BF, McGraw CE, Elliott KS, Leuze C, Roth JR, Harcum SW, Sandoval NR. Transient ammonia stress on Chinese hamster ovary (CHO) cells yield alterations to alanine metabolism and IgG glycosylation profiles. Biotechnol J 2021; 16:e2100098. [PMID: 34014036 DOI: 10.1002/biot.202100098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Ammonia concentrations typically increase during mammalian cell cultures, mainly due to glutamine and other amino acid consumption. An early ammonia stress indicator is a metabolic shift with respect to alanine. To determine the underlying mechanisms of this metabolic shift, a Chinese hamster ovary (CHO) cell line with two distinct ages (standard and young) was cultured in parallel fed-batch bioreactors with 0 mM or 10 mM ammonia added at 12 h. Reduced viable cell densities were observed for the stressed cells, while viability was not significantly affected. The stressed cultures had higher alanine, lactate, and glutamate accumulation. Interestingly, the ammonia concentrations were similar by Day 8.5 for all cultures. We hypothesized the ammonia was converted to alanine as a coping mechanism. Interestingly, no significant differences were observed for metabolite profiles due to cell age. Glycosylation analysis showed the ammonia stress reduced galactosylation, sialylation, and fucosylation. Transcriptome analysis of the standard-aged cultures indicated the ammonia stress had a limited impact on the transcriptome, where few of the significant changes were directly related metabolite or glycosylation reactions. These results indicate that mechanisms used to alleviate ammonia stress are most likely controlled post-transcriptionally, and this is where future research should focus.
Collapse
Affiliation(s)
| | - Claire E McGraw
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Kathryn S Elliott
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Christina Leuze
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jada R Roth
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|