1
|
Shi B, He H, Zhao C, Lei C, Li J, Yan FM. Potential of Virus-Mediated RNAi of Insect Genes in Plants to Control Aphids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7716-7724. [PMID: 40110729 DOI: 10.1021/acs.jafc.4c09681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Expression of double-stranded RNAs (dsRNAs) in plants is an emerging strategy to efficiently control insects. RNA interference (RNAi)-mediated pest control takes advantage of double-stranded RNA that can suppress the expression of one or more insect genes that encode key proteins. Virus-induced gene silencing (VIGS) is a useful tool for plant expression of dsRNAs to control pests without altering the plant's genome. Trehalase (TRE) and chitin synthase (CHS) are very important in insects. In this study, we first demonstrated that spraying dsRNAs targeting CHS and TRE increased the mortality rate of the peach aphid Myzus persicae treated with the pathogenic fungus Metarhizium anisopliae. When dsRNAs targeting mpTRE and mpCHS were expressed in plants via VIGS, the expression of mpTRE and mpCHS was reduced in aphids, and their fertility and survival rates were decreased. These results indicate that VIGS-mediated RNA interference is a powerful approach to effectively control aphids, and aphids had a higher mortality rate when M. anisopliae was sprayed.
Collapse
Affiliation(s)
- Baozheng Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng-Ming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Lin C, Zhu W, Wu S, Bian Q, Zhong J. Asymmetric Synthesis and Biological Activity of Contact Pheromone of Western Flower Thrips, Frankliniella occidentalis. Int J Mol Sci 2024; 25:11699. [PMID: 39519251 PMCID: PMC11546309 DOI: 10.3390/ijms252111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Western flower thrips, Frankliniella occidentalis, is a serious worldwide pest of agriculture and horticulture, and its contact pheromone is 7-methyltricosane. Two enantiomers of 7-methyltricosane were synthesized for the first time. The centra of our strategy were chiral auxiliaries to introduce stereocenter, and Wittig coupling to connect two blocks. The overall yields of our synthesis were 29-30% with seven steps. The electroantennogram (EAG) and the contact behavioral responses revealed that (R)-, (S)- and racemic 7-methyltricosane were separately bioactive, and the racemate was the most bioactive in the male arrestant activity and the female EAG test. This result provides valuable insights, showing that the racemate could be used for the support of the control of western flower thrips, which could be more easily prepared relative to more expensive enantiopure pheromone.
Collapse
Affiliation(s)
- Chuanwen Lin
- Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China (Q.B.)
| | - Wenya Zhu
- Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China (Q.B.)
| | - Shuai Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghua Bian
- Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China (Q.B.)
| | - Jiangchun Zhong
- Department of Applied Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100193, China (Q.B.)
| |
Collapse
|
3
|
Li XC, Ma YC, Long J, Yan X, Peng NN, Cai CH, Zhong WF, Huang YB, Qiao X, Zhou LX, Cai QC, Cheng CX, Zhou GF, Han YF, Liu HY, Zhang Q, Tang HM, Meng JH, Luo KJ. Simulating immunosuppressive mechanism of Microplitis bicoloratus bracovirus coordinately fights Spodoptera frugiperda. Front Immunol 2023; 14:1289477. [PMID: 38146373 PMCID: PMC10749342 DOI: 10.3389/fimmu.2023.1289477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Parasitoid wasps control pests via a precise attack leading to the death of the pest. However, parasitoid larvae exhibit self-protection strategies against bracovirus-induced reactive oxygen species impairment. This has a detrimental effect on pest control. Here, we report a strategy for simulating Microplitis bicoloratus bracovirus using Mix-T dsRNA targeting 14 genes associated with transcription, translation, cell-cell communication, and humoral signaling pathways in the host, and from wasp extracellular superoxide dismutases. We implemented either one-time feeding to the younger instar larvae or spraying once on the corn leaves, to effectively control the invading pest Spodoptera frugiperda. This highlights the conserved principle of "biological pest control," as elucidated by the triple interaction of parasitoid-bracovirus-host in a cooperation strategy of bracovirus against its pest host.
Collapse
Affiliation(s)
- Xing-Cheng Li
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yin-Chen Ma
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jin Long
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xiang Yan
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Nan-Nan Peng
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Cheng-Hui Cai
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Wen-Feng Zhong
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yong-Biao Huang
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Xin Qiao
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Li-Xiang Zhou
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Cheng
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Hong-Mei Tang
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology & Immunology, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Rodríguez D, Coy-Barrera E. Overview of Updated Control Tactics for Western Flower Thrips. INSECTS 2023; 14:649. [PMID: 37504655 PMCID: PMC10380671 DOI: 10.3390/insects14070649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), broadly known as Western flower thrips (WFT), are currently one of the most critical pests worldwide in field and greenhouse crops, and their management is full of yet unsolved challenges derived from their high reproductive potential, cryptic habit, and ability to disperse. The control of this pest relies widely on chemical control, despite the propensity of the species to develop resistance. However, significant advances have been produced through biological and ethological control. Although there has recently been a remarkable amount of new information regarding the management of this pest worldwide, there is no critical analysis of recent developments and advances in the attractive control tactics for WFT, constituting the present compilation's aim. Hence, this narrative review provides an overview of effective control strategies for managing thrips populations. By understanding the pest's biology, implementing monitoring techniques, accurately identifying the species, and employing appropriate control measures, farmers and researchers can mitigate the WFT impact on agricultural production and promote sustainable pest management practices.
Collapse
Affiliation(s)
- Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|