1
|
Wang X, Yu Z, Shen G, Cheng H, Tao S. Distribution of microbial communities in seasonally frozen soil layers on the Tibetan Plateau and the driving environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1919-1937. [PMID: 35925461 DOI: 10.1007/s11356-022-22283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Large stocks of carbon and nitrogen stored in permafrost regions can potentially feed back to global biogeochemical cycles under climate warming. To understand the response of microbial communities to environmental changes, this study investigated the spatial distribution of bacterial communities in the upper layers (0-10, 10-20, and 20-30 cm) of seasonally frozen soil on the Tibetan Plateau and their relationships with the environmental factors. A total of 135 soil samples were collected from the soils at depths of 0-10, 10-20, and 20-30 cm in the Lhasa River and Nyang River basins, and the diversity and composition of bacterial communities in them were identified by high-throughput 16S rRNA gene sequencing. Bacterial diversity changed significantly with soil depth in the Nyang River basin (p < 0.001), while no obvious change was found in the Lhasa River basin. The whole bacterial composition exhibited small variations across different soil layers (p > 0.05). The relative abundance of aerobic bacteria, Sphingomonas and Arthrobacter, decreased with soil depth, while that of the other aerobic, facultative anaerobic, and anaerobic bacteria did not exhibit this trend. Soil pH was the key driving edaphic factor of the whole bacterial composition in all three depth layers, while vegetation also had an important influence on bacterial composition. Arthrobacter, Bradyrhizobium, and Bacillus had obvious correlations with soil nutrients or vegetation, while the other species were not significantly correlated with any environmental factors. Structural equation modeling revealed that vegetation and mean annual temperature had a key direct impact on the bacterial diversity and composition, respectively. Climate also indirectly affected bacterial communities, mainly through shaping soil pH and vegetation. These results indicate that the soil depth has a different impact on the bacterial α-diversity, whole bacterial composition, and specific taxa in the 0-30-cm surface layers of seasonally frozen soil, which were mainly determined by various environmental factors.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Xu Q, Du Z, Wang L, Xue K, Wei Z, Zhang G, Liu K, Lin J, Lin P, Chen T, Xiao C. The Role of Thermokarst Lake Expansion in Altering the Microbial Community and Methane Cycling in Beiluhe Basin on Tibetan Plateau. Microorganisms 2022; 10:1620. [PMID: 36014037 PMCID: PMC9412574 DOI: 10.3390/microorganisms10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most significant environmental changes across the Tibetan Plateau (TP) is the rapid lake expansion. The expansion of thermokarst lakes affects the global biogeochemical cycles and local climate regulation by rising levels, expanding area, and increasing water volumes. Meanwhile, microbial activity contributes greatly to the biogeochemical cycle of carbon in the thermokarst lakes, including organic matter decomposition, soil formation, and mineralization. However, the impact of lake expansion on distribution patterns of microbial communities and methane cycling, especially those of water and sediment under ice, remain unknown. This hinders our ability to assess the true impact of lake expansion on ecosystem services and our ability to accurately investigate greenhouse gas emissions and consumption in thermokarst lakes. Here, we explored the patterns of microorganisms and methane cycling by investigating sediment and water samples at an oriented direction of expansion occurred from four points under ice of a mature-developed thermokarst lake on TP. In addition, the methane concentration of each water layer was examined. Microbial diversity and network complexity were different in our shallow points (MS, SH) and deep points (CE, SH). There are differences of microbial community composition among four points, resulting in the decreased relative abundances of dominant phyla, such as Firmicutes in sediment, Proteobacteria in water, Thermoplasmatota in sediment and water, and increased relative abundance of Actinobacteriota with MS and SH points. Microbial community composition involved in methane cycling also shifted, such as increases in USCγ, Methylomonas, and Methylobacter, with higher relative abundance consistent with low dissolved methane concentration in MS and SH points. There was a strong correlation between changes in microbiota characteristics and changes in water and sediment environmental factors. Together, these results show that lake expansion has an important impact on microbial diversity and methane cycling.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiheng Du
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Wang
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kai Xue
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Wei
- Zhuhai Branch of State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiahui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Penglin Lin
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|