1
|
Chen YT, Radke NV, Amarasekera S, Park DH, Chen N, Chhablani J, Wang NK, Wu WC, Ng DSC, Bhende P, Varma S, Leung E, Zhang X, Li F, Zhang S, Fang D, Liang J, Zhang Z, Liu H, Zhao P, Sharma T, Ruamviboonsuk P, Lai CC, Lam DSC. Updates on medical and surgical managements of diabetic retinopathy and maculopathy. Asia Pac J Ophthalmol (Phila) 2025; 14:100180. [PMID: 40054582 DOI: 10.1016/j.apjo.2025.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
Diabetic retinopathy (DR) and diabetic macular edema (DME) are leading causes of vision loss globally. This is a comprehensive review focused on both medical and surgical management strategies for DR and DME. This review highlights the epidemiology of DR and DME, with a particular emphasis on the Asia-Pacific region, urban-rural disparities, ethnic variations, and grading methodologies. We examine various risk factors for DR, including glycemic control, hypertension, hyperlipidemia, obesity, chronic kidney disease, sex, myopia, pregnancy, and cataract surgery. Furthermore, we explore potential biomarkers in serum, proteomics, metabolomics, vitreous, microRNA, and genetics that may aid in the detection and management of DR. In addition to medical management, we review the evidence supporting systemic and ocular treatments for DR/DME, including anti-vascular endothelial growth factor (anti-VEGF) agents, anti-inflammatory agents, biosimilars, and integrin inhibitors. Despite advancements in treatment options such as pan-retinal photocoagulation and anti-VEGF agents, a subset of cases still progresses, necessitating vitrectomy. Challenging diabetic vitrectomies pose difficulties due to complex fibrovascular proliferations, incomplete posterior vitreous detachment, and fragile, ischemic retinas, making membrane dissection risky and potentially damaging to the retina. In this review, we address the question of challenging diabetic vitrectomies, providing insights and strategies to minimize complications. Additionally, we briefly explore newer modalities such as 3-dimensional vitrectomy and intra-operative optical coherence tomography as potential tools in diabetic vitrectomy. In conclusion, this review provides a comprehensive overview of both medical and surgical management options for DR and DME. It underscores the importance of a multidisciplinary approach, tailored to the needs of each patient, to optimize visual outcomes and improve the quality of life for those affected by these sight-threatening conditions.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Ophthalmology, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nishant V Radke
- The Primasia International Eye Research Institute (PIERI) of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Sohani Amarasekera
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, South Korea
| | - Nelson Chen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Danny S C Ng
- The Primasia International Eye Research Institute (PIERI) of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Pramod Bhende
- Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Shobhit Varma
- Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Enne Leung
- The Primasia International Eye Research Institute (PIERI) of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Center, Southern Medical University, Shenzhen, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Center, Southern Medical University, Shenzhen, China
| | - Jia Liang
- Shenzhen Eye Hospital, Shenzhen Eye Center, Southern Medical University, Shenzhen, China
| | - Zheming Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huanyu Liu
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tarun Sharma
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Paisan Ruamviboonsuk
- Department of Ophthalmology, College of Medicine, Rangsit University, Rajavithi Hospital, Bangkok, Thailand
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Dennis S C Lam
- The Primasia International Eye Research Institute (PIERI) of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
2
|
Sienkiewicz-Szłapka E, Fiedorowicz E, Król-Grzymała A, Kordulewska N, Rozmus D, Cieślińska A, Grzybowski A. The Role of Genetic Polymorphisms in Diabetic Retinopathy: Narrative Review. Int J Mol Sci 2023; 24:15865. [PMID: 37958858 PMCID: PMC10650381 DOI: 10.3390/ijms242115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetic retinopathy (DR) is renowned as a leading cause of visual loss in working-age populations with its etiopathology influenced by the disturbance of biochemical metabolic pathways and genetic factors, including gene polymorphism. Metabolic pathways considered to have an impact on the development of the disease, as well as genes and polymorphisms that can affect the gene expression, modify the quantity and quality of the encoded product (protein), and significantly alter the metabolic pathway and its control, and thus cause changes in the functioning of metabolic pathways. In this article, the screening of chromosomes and the most important genes involved in the etiology of diabetic retinopathy is presented. The common databases with manuscripts published from January 2000 to June 2023 have been taken into consideration and chosen. This article indicates the role of specific genes in the development of diabetic retinopathy, as well as polymorphic changes within the indicated genes that may have an impact on exacerbating the symptoms of the disease. The collected data will allow for a broader look at the disease and help to select candidate genes that can become markers of the disease.
Collapse
Affiliation(s)
- Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland;
| |
Collapse
|
3
|
Jin H, Jiang D, Ding Z, Xiong Y, Zeng X, Liao M, Zheng L, Yang B. Association of four gene polymorphisms in Chinese Guangxi population with diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmol 2021; 21:383. [PMID: 34706712 PMCID: PMC8555088 DOI: 10.1186/s12886-021-02146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Background Diabetic retinopathy (DR) is one of the most common chronic microvascular complications of diabetes. Many studies have suggested that genetic factors are important in the context of DR. This study evaluated the associations of GWAS (Genome-wide association study) -identified DR-associated SNPs in a Chinese population in Guangxi Province with type 2 diabetes mellitus (T2DM). Methods A total of 386 hospitalized T2DM patients without proliferative diabetic retinopathy (PDR) and 316 hospitalized T2DM patients with PDR were included in this case–control study. Four tag SNPs, including rs1800896 in the IL-10 gene, rs2010963 in the VEGFA gene, rs2070600 in the RAGE gene and rs2910164 in the miR-146a gene, were examined using KASP (kompetitive allele specific PCR) genotyping assays. Results There were no significant differences in the genotype or allele frequencies of the miR-146a polymorphism (rs2910164) between subjects with PDR and those without DR. The TC genotype of rs1800896 was determined to be associated with an increased risk of PDR (the odds ratio (OR) was 2.366, with a 95% confidence interval (CI) ranging from 1.144 to 4.894). The CG genotypes of rs2010963 was associated with an decreased risk of PDR (the OR was 0.588, with a 95% CI ranging from 0.366 to 0.946). Regarding rs2070600, 2 genotypes (TT and CT) were associated with a decreased risk of PDR (the OR of the TT genotype was 0.180, with a 95% CI ranging from 0.037 to 0.872, and the OR of the CT genotype was 0.448, with a 95% CI ranging from 0.266 to 0.753). Conclusions The rs1800896 polymorphisms in the IL-10 gene, rs2010963 in the VEGFA gene and rs2070600 in the RAGE gene are associated with the risk of PDR in the Han Chinese population of Guangxi Province. Our findings provide suggestive evidence that these polymorphisms may be involved in the pathogenesis of PDR and should be investigated further.
Collapse
Affiliation(s)
- He Jin
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541001, China.
| | - Dongdong Jiang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541001, China
| | - Zhixiang Ding
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541001, China
| | - Yu Xiong
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541001, China
| | - Xinsheng Zeng
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541001, China
| | - Miaoyun Liao
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541001, China
| | - Liu Zheng
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541001, China
| | - Binbin Yang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541001, China
| |
Collapse
|
4
|
Mathala N, Akula A, Hegde S, Bitra R, Sachedev V. Assessment of Circulating Biomarkers in Relation to Various Stages of Diabetic Retinopathy in Type 2 Diabetic Patients-A Cross Sectional Study. Curr Diabetes Rev 2020; 16:402-409. [PMID: 31441730 DOI: 10.2174/1573399815666190823155534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Accepted: 08/04/2019] [Indexed: 11/22/2022]
Abstract
AIM The aim of this study is to examine the relationship between inflammatory markers, and diabetic retinopathy in type II diabetic patients. METHODS The study was a cross-sectional study included 150 type 2 diabetic patients who were divided into 3 groups. 50 in each group are divided as Diabetic patients without retinopathy (DM, n=50), nonproliferative diabetic retinopathy patients (NPDR, n=50), proliferative diabetic retinopathy patients (PDR, n=50). All the patients were subjected to complete clinical examination and laboratory investigations, such as fasting and postprandial blood glucose, serum creatinine, lipid profile tests, glycosylated haemoglobin (HbA1c), fasting insulin, serum inflammatory markers (TNF-alpha, C-reactive protein) and serum VEGF. RESULTS The study revealed from the multivariate analysis that age, duration and WHR (waist-hip ratio) are potent risk factors responsible for the risk of Diabetic retinopathy. Similarly, serum creatinine, CRP, TNF- alpha and VEGF are significantly higher in diabetic patients with retinopathy compared to diabetic patients without retinopathy. CONCLUSION The study concluded that inflammation was associated with severe diabetic retinopathy in patients with well-controlled diabetes. A possible relationship was provided between the risk factors and biomarkers which are responsible for Diabetic retinopathy. Hence, modifying the risk factors risk and development of severe diabetic retinopathy can be reduced.
Collapse
Affiliation(s)
- Nalini Mathala
- Department of Pharmacology, AU College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Annapurna Akula
- Department of Pharmacology, AU College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sharat Hegde
- Department of Retina Vitreous Services, L V Prasad Eye Institute, GMR Varalakshmi Campus, Vishakhapatnam, Andhra Pradesh, India
| | - Raghava Bitra
- Department of Pharmacology, AU College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Virender Sachedev
- Department of Retina Vitreous Services, L V Prasad Eye Institute, GMR Varalakshmi Campus, Vishakhapatnam, Andhra Pradesh, India
| |
Collapse
|
5
|
Sharma A, Valle ML, Beveridge C, Liu Y, Sharma S. Unraveling the role of genetics in the pathogenesis of diabetic retinopathy. Eye (Lond) 2019; 33:534-541. [PMID: 30679875 PMCID: PMC6461978 DOI: 10.1038/s41433-019-0337-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disease of the retina and the leading cause of visual disability in diabetic patients. Genetic factors have shown to play a pivotal role in DR onset, and several candidate genes have been associated with its progression. A literature search was performed to identify the genes known to be associated with DR through linkage analysis, candidate gene association, and genome-wide association studies (GWAS). A further literature search was performed to discover their potential connection with various biological pathways. A total of 65 genes were found and several of these genes belong to major signaling pathways known to play a significant role in DR, including systemic inflammation, angiogenesis, and neurogenesis. A comprehensive analysis presented in this review will be helpful in unraveling the role of genetics in the pathogenesis of DR.
Collapse
Affiliation(s)
- Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Maria L Valle
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Connor Beveridge
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Yutao Liu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia.
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, Georgia.
| |
Collapse
|
6
|
Jonas JB, Wei WB, Xu L, Wang YX. Systemic inflammation and eye diseases. The Beijing Eye Study. PLoS One 2018; 13:e0204263. [PMID: 30281641 PMCID: PMC6169913 DOI: 10.1371/journal.pone.0204263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Purpose Systemic inflammation is potentially associated with ocular diseases such as late age-related macular degeneration (AMD). Using the serum concentration of high-sensitive C-reactive protein (hs-CRP) as surrogate of systemic inflammation, we examined potential associations between the serum hs-CRP concentration and the presence and degree of eye diseases. Methods The population-based Beijing Eye Study included 3468 Chinese individuals. The study participants underwent a standardized interview and a detailed ophthalmic examination. The serum concentration of hs-CRP was determined. Results Out of 3468 participants, 2452 (70.7%) individuals (mean age:63.4±9.4 year; range:50–91 years) had hs-CRP measurements (mean:1.96±4.07mg/L). In multivariate analysis, higher serum concentration of hs-CRP was significantly (regression coefficient r: 0.21) associated with a higher level of diabetic retinopathy (P = 0.007; standardized regression coefficient beta:0.06; non-standardized regression coefficient B:1.35; 95% confidence interval (CI):0.37,2.22) and polypoidal choroidal vasculopathy (P = 0.002;beta:0.06;B:6.22;95%CI:2.24,10.2) after adjusting for higher serum concentration of high-density lipoproteins (P<0.001;beta:-0.12;B:-1.31;95%CI:-1.77,-0.85), higher body mass index (P = 0.01;beta:0.06;B:0.06;95%CI:0.01, 0.11), lower level of education (P = 0.04;beta:-0.06;B:-0.22;95%CI:-0.42,-0.02), lower cognitive function score (P = 0.01;beta:-0.07;B:-0.08;95%CI:-0.13,-0.02). If the presences of other ocular diseases were added to the model, the presence of glaucoma (P = 0.99), open-angle glaucoma (P = 0.80), angle-closure glaucoma (P = 0.67), pseudoexfoliation (P = 0.18), nuclear cataract (P = 0.30), cortical cataract (P = 0.15), subcapsular cataract (P = 0.59), retinal vein occlusions (P = 0.33), central serous choroidopathy (P = 0.44), early stage of age-related macular degeneration (AMD) (P = 0.46), intermediate stage of AMD (P = 0.20) and late stage of AMD (P = 0.91) including geographic atrophy (P = 0.60) or neovascular AMD (P = 0.68) were not significantly associated with the serum concentration of hs-CRP. Conclusions In Chinese aged 50+ years, higher serum concentration of hs-CRP was significantly associated with a higher level of diabetic retinopathy and higher frequency of polypoidal choroidal vasculopathy. Other major ocular disorders, namely glaucoma including open-angle glaucoma and angle-closure glaucoma, pseudoexfoliation, nuclear, cortical or subcapsular cataract, retinal vein occlusions, central serous choroidopathy, early, intermediate or late stage of AMD including geographic atrophy, were not significantly associated with hs-CRP serum concentrations. It suggests that these diseases, in contrast to diabetic retinopathy and polypoidal choroidal vasculopathy, were not associated with a major systemic inflammatory component.
Collapse
Affiliation(s)
- Jost B. Jonas
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University, Mannheim, Germany
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail: (YXW); (WBW)
| | - Liang Xu
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing, China
- * E-mail: (YXW); (WBW)
| |
Collapse
|
7
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
8
|
Gupta A, Bhatnagar S. Vasoregression: A Shared Vascular Pathology Underlying Macrovascular And Microvascular Pathologies? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:733-53. [PMID: 26669709 DOI: 10.1089/omi.2015.0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vasoregression is a common phenomenon underlying physiological vessel development as well as pathological microvascular diseases leading to peripheral neuropathy, nephropathy, and vascular oculopathies. In this review, we describe the hallmarks and pathways of vasoregression. We argue here that there is a parallel between characteristic features of vasoregression in the ocular microvessels and atherosclerosis in the larger vessels. Shared molecular pathways and molecular effectors in the two conditions are outlined, thus highlighting the possible systemic causes of local vascular diseases. Our review gives us a system-wide insight into factors leading to multiple synchronous vascular diseases. Because shared molecular pathways might usefully address the diagnostic and therapeutic needs of multiple common complex diseases, the literature analysis presented here is of broad interest to readership in integrative biology, rational drug development and systems medicine.
Collapse
Affiliation(s)
- Akanksha Gupta
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India .,2 Department of Biotechnology, IMS Engineering College , Ghaziabad, India
| | - Sonika Bhatnagar
- 1 Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India
| |
Collapse
|
9
|
LIU HUI, LIU HONGYANG, JIANG YINONG, LI NAN. Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Mol Med Rep 2016; 13:2836-42. [DOI: 10.3892/mmr.2016.4823] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
|
10
|
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev Diabet Stud 2015; 12:159-95. [PMID: 26676667 DOI: 10.1900/rds.2015.12.159] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a global diabetes epidemic correlating with an increase in obesity. This coincidence may lead to a rise in the prevalence of type 2 diabetes. There is also an as yet unexplained increase in the incidence of type 1 diabetes, which is not related to adiposity. Whilst improved diabetes care has substantially improved diabetes outcomes, the disease remains a common cause of working age adult-onset blindness. Diabetic retinopathy is the most frequently occurring complication of diabetes; it is greatly feared by many diabetes patients. There are multiple risk factors and markers for the onset and progression of diabetic retinopathy, yet residual risk remains. Screening for diabetic retinopathy is recommended to facilitate early detection and treatment. Common biomarkers of diabetic retinopathy and its risk in clinical practice today relate to the visualization of the retinal vasculature and measures of glycemia, lipids, blood pressure, body weight, smoking, and pregnancy status. Greater knowledge of novel biomarkers and mediators of diabetic retinopathy, such as those related to inflammation and angiogenesis, has contributed to the development of additional therapeutics, in particular for late-stage retinopathy, including intra-ocular corticosteroids and intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') agents. Unfortunately, in spite of a range of treatments (including laser photocoagulation, intraocular steroids, and anti-VEGF agents, and more recently oral fenofibrate, a PPAR-alpha agonist lipid-lowering drug), many patients with diabetic retinopathy do not respond well to current therapeutics. Therefore, more effective treatments for diabetic retinopathy are necessary. New analytical techniques, in particular those related to molecular markers, are accelerating progress in diabetic retinopathy research. Given the increasing incidence and prevalence of diabetes, and the limited capacity of healthcare systems to screen and treat diabetic retinopathy, there is need to reliably identify and triage people with diabetes. Biomarkers may facilitate a better understanding of diabetic retinopathy, and contribute to the development of novel treatments and new clinical strategies to prevent vision loss in people with diabetes. This article reviews key aspects related to biomarker research, and focuses on some specific biomarkers relevant to diabetic retinopathy.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | | - Anthony C Keech
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | - David N O'Neal
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, Sydney, Australia
| | | |
Collapse
|