1
|
Lauffenburger JC, Lu Z, Mahesri M, Kim E, Tong A, Kim SC. Using Data-Driven Approaches to Classify and Predict Health Care Spending in Patients With Gout Using Urate-Lowering Therapy. Arthritis Care Res (Hoboken) 2022; 75:1300-1310. [PMID: 36039962 DOI: 10.1002/acr.25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Despite increasing overall health care spending over the past several decades, little is known about long-term patterns of spending among US patients with gout. Current approaches to assessing spending typically focus on composite measures or patients agnostic to disease state; in contrast, examining spending using longitudinal measures may better discriminate patients and target interventions to those in need. We used a data-driven approach to classify and predict spending patterns in patients with gout. METHODS Using insurance claims data from 2017-2019, we used group-based trajectory modeling to classify patients ages 40 years or older diagnosed with gout and treated with urate-lowering therapy (ULT) by their total health care spending over 2 years. We assessed the ability to predict membership in each spending group using logistic and generalized boosted regression with split-sample validation. Models were estimated using different sets of predictors and evaluated using C statistics. RESULTS In 57,980 patients, the mean ± SD age was 71.0 ± 10.5 years, and 17,194 patients (29.7%) were female. The best-fitting model included the following groups: minimal spending (13.2%), moderate spending (37.4%), and high spending (49.4%). The ability to predict groups was high overall (e.g., boosted C statistics with all predictors: minimal spending [0.89], moderate spending [0.78], and high spending [0.90]). Although average adherence was relatively high in the population, for the high-spending group, the most influential predictors were greater gout medication adherence and diabetes melllitus diagnosis. CONCLUSION We identified distinct long-term health care spending patterns in patients with gout using ULT with high accuracy. Several clinical predictors could be key areas for intervention, such as gout medication use or diabetes melllitus.
Collapse
Affiliation(s)
| | - Zhigang Lu
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mufaddal Mahesri
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Erin Kim
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Angela Tong
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Seoyoung C Kim
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Douthit BJ, Walden RL, Cato K, Coviak CP, Cruz C, D'Agostino F, Forbes T, Gao G, Kapetanovic TA, Lee MA, Pruinelli L, Schultz MA, Wieben A, Jeffery AD. Data Science Trends Relevant to Nursing Practice: A Rapid Review of the 2020 Literature. Appl Clin Inform 2022; 13:161-179. [PMID: 35139564 PMCID: PMC8828453 DOI: 10.1055/s-0041-1742218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The term "data science" encompasses several methods, many of which are considered cutting edge and are being used to influence care processes across the world. Nursing is an applied science and a key discipline in health care systems in both clinical and administrative areas, making the profession increasingly influenced by the latest advances in data science. The greater informatics community should be aware of current trends regarding the intersection of nursing and data science, as developments in nursing practice have cross-professional implications. OBJECTIVES This study aimed to summarize the latest (calendar year 2020) research and applications of nursing-relevant patient outcomes and clinical processes in the data science literature. METHODS We conducted a rapid review of the literature to identify relevant research published during the year 2020. We explored the following 16 topics: (1) artificial intelligence/machine learning credibility and acceptance, (2) burnout, (3) complex care (outpatient), (4) emergency department visits, (5) falls, (6) health care-acquired infections, (7) health care utilization and costs, (8) hospitalization, (9) in-hospital mortality, (10) length of stay, (11) pain, (12) patient safety, (13) pressure injuries, (14) readmissions, (15) staffing, and (16) unit culture. RESULTS Of 16,589 articles, 244 were included in the review. All topics were represented by literature published in 2020, ranging from 1 article to 59 articles. Numerous contemporary data science methods were represented in the literature including the use of machine learning, neural networks, and natural language processing. CONCLUSION This review provides an overview of the data science trends that were relevant to nursing practice in 2020. Examinations of such literature are important to monitor the status of data science's influence in nursing practice.
Collapse
Affiliation(s)
- Brian J. Douthit
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rachel L. Walden
- Annette and Irwin Eskind Family Biomedical Library, Vanderbilt University, Nashville, Tennessee, United States
| | - Kenrick Cato
- Department of Emergency Medicine, Columbia University School of Nursing, New York, New York, United States
| | - Cynthia P. Coviak
- Professor Emerita of Nursing, Grand Valley State University, Allendale, Michigan, United States
| | - Christopher Cruz
- Global Health Technology and Informatics, Chevron, San Ramon, California, United States
| | - Fabio D'Agostino
- Department of Medicine and Surgery, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Thompson Forbes
- College of Nursing, East Carolina University, Greenville, North California, United States
| | - Grace Gao
- Department of Nursing, St Catherine University, Saint Paul, Minnesota, United States
| | - Theresa A. Kapetanovic
- College of Nursing, East Carolina University, Greenville, North California, United States
| | - Mikyoung A. Lee
- College of Nursing, Texas Woman's University, Denton, Texas, United States
| | - Lisiane Pruinelli
- School of Nursing, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mary A. Schultz
- Department of Nursing, California State University, San Bernardino, California, United States
| | - Ann Wieben
- School of Nursing, University of Wisconsin-Madison, Wisconsin, United States
| | - Alvin D. Jeffery
- School of Nursing, Vanderbilt University; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee, United States,Address for correspondence Alvin D. Jeffery, PhD, RN-BC, CCRN-K, FNP-BC 461 21st Avenue South, Nashville, TN 37240United States
| |
Collapse
|
3
|
Lauffenburger JC, Yom-Tov E, Keller PA, McDonnell ME, Bessette LG, Fontanet CP, Sears ES, Kim E, Hanken K, Buckley JJ, Barlev RA, Haff N, Choudhry NK. REinforcement learning to improve non-adherence for diabetes treatments by Optimising Response and Customising Engagement (REINFORCE): study protocol of a pragmatic randomised trial. BMJ Open 2021; 11:e052091. [PMID: 34862289 PMCID: PMC8647547 DOI: 10.1136/bmjopen-2021-052091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Achieving optimal diabetes control requires several daily self-management behaviours, especially adherence to medication. Evidence supports the use of text messages to support adherence, but there remains much opportunity to improve their effectiveness. One key limitation is that message content has been generic. By contrast, reinforcement learning is a machine learning method that can be used to identify individuals' patterns of responsiveness by observing their response to cues and then optimising them accordingly. Despite its demonstrated benefits outside of healthcare, its application to tailoring communication for patients has received limited attention. The objective of this trial is to test the impact of a reinforcement learning-based text messaging programme on adherence to medication for patients with type 2 diabetes. METHODS AND ANALYSIS In the REinforcement learning to Improve Non-adherence For diabetes treatments by Optimising Response and Customising Engagement (REINFORCE) trial, we are randomising 60 patients with suboptimal diabetes control treated with oral diabetes medications to receive a reinforcement learning intervention or control. Subjects in both arms will receive electronic pill bottles to use, and those in the intervention arm will receive up to daily text messages. The messages will be individually adapted using a reinforcement learning prediction algorithm based on daily adherence measurements from the pill bottles. The trial's primary outcome is average adherence to medication over the 6-month follow-up period. Secondary outcomes include diabetes control, measured by glycated haemoglobin A1c, and self-reported adherence. In sum, the REINFORCE trial will evaluate the effect of personalising the framing of text messages for patients to support medication adherence and provide insight into how this could be adapted at scale to improve other self-management interventions. ETHICS AND DISSEMINATION This study was approved by the Mass General Brigham Institutional Review Board (IRB) (USA). Findings will be disseminated through peer-reviewed journals, clinicaltrials.gov reporting and conferences. TRIAL REGISTRATION NUMBER Clinicaltrials.gov (NCT04473326).
Collapse
Affiliation(s)
- Julie C Lauffenburger
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elad Yom-Tov
- Microsoft Research, Microsoft, Herzeliya, Israel
| | - Punam A Keller
- Tuck School of Business, Dartmouth College, Hanover, NH, USA
| | - Marie E McDonnell
- Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lily G Bessette
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Constance P Fontanet
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ellen S Sears
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erin Kim
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlin Hanken
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - J Joseph Buckley
- Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Renee A Barlev
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nancy Haff
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niteesh K Choudhry
- Center for Healthcare Delivery Sciences, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Lauffenburger JC, Barlev RA, Sears ES, Keller PA, McDonnell ME, Yom-Tov E, Fontanet CP, Hanken K, Haff N, Choudhry NK. Preferences for mHealth Technology and Text Messaging Communication in Patients With Type 2 Diabetes: Qualitative Interview Study. J Med Internet Res 2021; 23:e25958. [PMID: 34114964 PMCID: PMC8235286 DOI: 10.2196/25958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Background Individuals with diabetes need regular support to help them manage their diabetes on their own, ideally delivered via mechanisms that they already use, such as their mobile phones. One reason for the modest effectiveness of prior technology-based interventions may be that the patient perspective has been insufficiently incorporated. Objective This study aims to understand patients’ preferences for mobile health (mHealth) technology and how that technology can be integrated into patients’ routines, especially with regard to medication use. Methods We conducted semistructured qualitative individual interviews with patients with type 2 diabetes from an urban health care system to elicit and explore their perspectives on diabetes medication–taking behaviors, daily patterns of using mobile technology, use of mHealth technology for diabetes care, acceptability of text messages to support medication adherence, and preferred framing of information within text messages to support diabetes care. The interviews were digitally recorded and transcribed. The data were analyzed using codes developed by the study team to generate themes, with representative quotations selected as illustrations. Results We conducted interviews with 20 participants, of whom 12 (60%) were female and 9 (45%) were White; in addition, the participants’ mean glycated hemoglobin A1c control was 7.8 (SD 1.1). Overall, 5 key themes were identified: patients try to incorporate cues into their routines to help them with consistent medication taking; many patients leverage some form of technology as a cue to support adherence to medication taking and diabetes self-management behaviors; patients value simplicity and integration of technology solutions used for diabetes care, managing medications, and communicating with health care providers; some patients express reluctance to rely on mobile technology for these diabetes care behaviors; and patients believe they prefer positively framed communication, but communication preferences are highly individualized. Conclusions The participants expressed some hesitation about using mobile technology in supporting diabetes self-management but have largely incorporated it or are open to incorporating it as a cue to make medication taking more automatic and less burdensome. When using technology to support diabetes self-management, participants exhibited individualized preferences, but overall, they preferred simple and positively framed communication. mHealth interventions may be improved by focusing on integrating them easily into daily routines and increasing the customization of content.
Collapse
Affiliation(s)
| | - Renee A Barlev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ellen S Sears
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Marie E McDonnell
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | - Kaitlin Hanken
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nancy Haff
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Niteesh K Choudhry
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|