1
|
Qiao Q, Zhao Z, Sun Y, Wang J, Li X, Zhang L, Yang H, Zhang N, Zhang K, Bai Y. Combination of Periodontal Ligament Stem Cells and Metformin via Organic Cation Transporters for Periodontal Regeneration in Rats. Biomolecules 2025; 15:663. [PMID: 40427556 DOI: 10.3390/biom15050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Periodontal regeneration remains challenging due to individual variability, especially in treatments involving bioactive factors such as metformin. This study aimed to investigate the role of organic cation transporters (OCTs) in metformin-induced periodontal regeneration. The expression and function of OCTs in human periodontal ligament stem cells (hPDLSCs) were assessed, and OCT-mediated metformin uptake was quantified by high-performance liquid chromatography (HPLC). Osteogenic and cementogenic differentiation markers were analyzed in vitro, and periodontal regeneration was evaluated using a rat periodontal defect model. OCTs were differentially expressed and functional in hPDLSCs. Both the OCT1 inhibitor cimetidine and OCT1 knockdown significantly reduced intracellular metformin accumulation to 50-60% and 20-30% of control levels, respectively (p < 0.01). Cimetidine diminished the osteogenic and cementogenic effects of metformin by approximately 31-48% and 32-40%, respectively (p < 0.01). In vivo, oral administration of cimetidine decreased bone regeneration by 25% and cementum regeneration by 36% compared with controls receiving GelMA/hPDLSCs/metformin (p < 0.01). This study demonstrates that OCTs regulate metformin uptake in hPDLSCs, and that inhibition of OCT1 by cimetidine significantly reduces the osteogenic and cementogenic efficacy of metformin, providing the first evidence of drug interactions affecting periodontal regeneration mediated by OCT transport in rats.
Collapse
Affiliation(s)
- Qingchen Qiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Yaxi Sun
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Jing Wang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Xiaowei Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Li Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Hao Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100070, China
| |
Collapse
|
2
|
Jafarzadeh S, Nemati M, Zandvakili R, Jafarzadeh A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int Immunopharmacol 2025; 151:114345. [PMID: 40024215 DOI: 10.1016/j.intimp.2025.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Macrophages perform an essential role in the body's defense mechanisms and tissue homeostasis. These cells exhibit plasticity and are categorized into two phenotypes, including classically activated/M1 pro-inflammatory and alternatively activated/M2 anti-inflammatory phenotypes. Functional deviation in macrophage polarization occurs in different pathological conditions that need correction. In addition to antidiabetic impacts, metformin also possesses multiple biological activities, including immunomodulatory, anti-inflammatory, anti-tumorigenic, anti-aging, cardioprotective, hepatoprotective, and tissue-regenerative properties. Metformin can influence the polarization of macrophages toward M1 and M2 phenotypes. The ability of metformin to support M2 polarization and suppress M1 polarization could enhance its anti-inflammatory properties and potentiate its protective effects in conditions such as chronic inflammatory diseases, atherosclerosis, and obesity. However, in metformin-treated tumors, the proportion of M2 macrophages is decreased, while the frequency ratio of M1 macrophages is increased, indicating that metformin can modulate macrophage polarization from a pro-tumoral M2 state to an anti-tumoral M1 phenotype in malignancies. Metformin affects macrophage polarization through AMPK-dependent and independent pathways involving factors, such as NF-κB, mTOR, ATF, AKT/AS160, SIRT1, STAT3, HO-1, PGC-1α/PPAR-γ, and NLRP3 inflammasome. By modulating cellular metabolism and apoptosis, metformin can also influence macrophage polarization. This review provides comprehensive evidence regarding metformin's effects on macrophage polarization and the underlying mechanisms. The polarization-inducing capabilities of metformin may provide significant therapeutic applications in various inflammatory diseases and malignant tumors.
Collapse
Affiliation(s)
- Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Bazzazzadehgan S, Shariat-Madar Z, Mahdi F. Distinct Roles of Common Genetic Variants and Their Contributions to Diabetes: MODY and Uncontrolled T2DM. Biomolecules 2025; 15:414. [PMID: 40149950 PMCID: PMC11940602 DOI: 10.3390/biom15030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) encompasses a range of clinical manifestations, with uncontrolled diabetes leading to progressive or irreversible damage to various organs. Numerous genes associated with monogenic diabetes, exhibiting classical patterns of inheritance (autosomal dominant or recessive), have been identified. Additionally, genes involved in complex diabetes, which interact with environmental factors to trigger the disease, have also been discovered. These genetic findings have raised hopes that genetic testing could enhance diagnostics, disease surveillance, treatment selection, and family counseling. However, the accurate interpretation of genetic data remains a significant challenge, as variants may not always be definitively classified as either benign or pathogenic. Research to date, however, indicates that periodic reevaluation of genetic variants in diabetes has led to more consistent findings, with biases being steadily eliminated. This has improved the interpretation of variants across diverse ethnicities. Clinical studies suggest that genetic risk information may motivate patients to adopt behaviors that promote the prevention or management of T2DM. Given that the clinical features of certain monogenic diabetes types overlap with T2DM, and considering the significant role of genetic variants in diabetes, healthcare providers caring for prediabetic patients should consider genetic testing as part of the diagnostic process. This review summarizes current knowledge of the most common genetic variants associated with T2DM, explores novel therapeutic targets, and discusses recent advancements in the pharmaceutical management of uncontrolled T2DM.
Collapse
Affiliation(s)
- Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
4
|
Bai W, Tan H, Duan X, Hu J, Wang F, Wu J, Bai J, Hu J. Inhibitory effects of flavonoids on organic cation transporter 1: Implications for food/herb-drug interactions and hepatoprotective effects. Food Chem Toxicol 2024; 193:114983. [PMID: 39245401 DOI: 10.1016/j.fct.2024.114983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Organic cation transporter 1 (OCT1, gene symbol: SLC22A1) is mainly responsible for the hepatic uptake of various cationic drugs, closely associated with drug-induced liver injury (DILI). Screening and identifying potent OCT1 inhibitors with little toxicity in natural products is of great value in alleviating OCT1-mediated liver injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions (FDIs). Our objective was to investigate potential inhibitors of OCT1 from 96 flavonoids, evaluate the hepatoprotective effects on retrorsine-induced liver injury, and clarify the structure-activity relationships of flavonoids with OCT1. Thirteen flavonoids exhibited significant inhibition (>50%) on OCT1 in OCT1-HEK293 cells. Among them, the five strongest flavonoid inhibitors (IC50 < 10 μM), including α-naphthoflavone, apigenin, 6-hydroxyflavone, luteolin, and isosilybin markedly decreased oxaliplatin-induced cytotoxicity. In retrorsine-induced liver injury models, they also reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to different levels, the best of which was 6-hydroxyflavone. The pharmacophore model clarified that hydrogen bond acceptors at the 4,8,5' position might play a vital role in the inhibitory effect of flavonoids on OCT1. Taken together, our findings would pave the way to predicting the potential risks of flavonoid-related FDIs in humans and optimizing flavonoid structure to alleviate OCT1-mediated liver injury.
Collapse
Affiliation(s)
- Wanting Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Huixin Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyan Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiahuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fenghe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jinjin Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
5
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
6
|
Goglia U, Hasballa I, Teti C, Boschetti M, Ferone D, Albertelli M. Ianus Bifrons: The Two Faces of Metformin. Cancers (Basel) 2024; 16:1287. [PMID: 38610965 PMCID: PMC11011026 DOI: 10.3390/cancers16071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ancient Roman god Ianus was a mysterious divinity with two opposite faces, one looking at the past and the other looking to the future. Likewise, metformin is an "old" drug, with one side looking at the metabolic role and the other looking at the anti-proliferative mechanism; therefore, it represents a typical and ideal bridge between diabetes and cancer. Metformin (1,1-dimethylbiguanidine hydrochloride) is a drug that has long been in use for the treatment of type 2 diabetes mellitus, but recently evidence is growing about its potential use in other metabolic conditions and in proliferative-associated diseases. The aim of this paper is to retrace, from a historical perspective, the knowledge of this molecule, shedding light on the subcellular mechanisms of action involved in metabolism as well as cellular and tissue growth. The intra-tumoral pharmacodynamic effects of metformin and its possible role in the management of different neoplasms are evaluated and debated. The etymology of the name Ianus is probably from the Latin term ianua, which means door. How many new doors will this old drug be able to open?
Collapse
Affiliation(s)
- Umberto Goglia
- Endocrinology and Diabetology Unit, Local Health Authority CN1, 12100 Cuneo, Italy
| | - Iderina Hasballa
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Claudia Teti
- Endocrinology and Diabetology Unit, Local Health Autorithy Imperia 1, 18100 Imperia, Italy;
| | - Mara Boschetti
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| | - Manuela Albertelli
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (M.B.); (D.F.); (M.A.)
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, 16132 Genoa, Italy
| |
Collapse
|
7
|
Le J, Chen Y, Yang W, Chen L, Ye J. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus. Acta Pharm Sin B 2024; 14:437-454. [PMID: 38322335 PMCID: PMC10840401 DOI: 10.1016/j.apsb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 02/08/2024] Open
Abstract
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Yang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Pradana AD, Kristin E, Nugrahaningsih DAA, Nugroho AK, Pinzon RT. Influence of Solute Carrier Family 22 Member 1 ( SLC22A1) Gene Polymorphism on Metformin Pharmacokinetics and HbA1c Levels: A Systematic Review. Curr Diabetes Rev 2024; 20:e070823219470. [PMID: 37550919 DOI: 10.2174/1573399820666230807145202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Solute Carrier Family 22 Member 1 (SLC22A1, also known as OCT1) protein has a vital role in the metabolism of metformin, a first-line anti-diabetes medication. Genetic poly-morphism in SLC22A1 influences individual response to metformin. OBJECTIVE This review aims to compile the current knowledge about the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c levels. METHODS We followed the PRISMA 2020 standards to conduct a systematic review. We searched the publications for all appropriate evidence on the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c from January 2002 to December 2022. RESULTS Initial database searches identified 7,171 relevant studies. We reviewed 155 titles and abstracts after deleting duplicates. After applying inclusion and exclusion criteria, 23 studies remained. CONCLUSION Three studies found that rs12208357, rs34059508, and G465R had a considerable impact (p < 0.05) on metformin pharmacokinetics, resulting in increased metformin plasma (Cmax), a higher active amount of drug in the blood (AUC), and lower volume of distribution (Vd) (p<0.05). SLC22A1 polymorphisms with effects on HbA1c include rs628031 (four of seven studies), rs622342 (four of six studies), rs594709 (one study), rs2297374, and rs1867351 (one of two studies), rs34130495 (one study), and rs11212617 (one study) (p < 0.05).
Collapse
Affiliation(s)
- A D Pradana
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta 55584, Indonesia
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - E Kristin
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - D A A Nugrahaningsih
- Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - A K Nugroho
- Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
| | - R T Pinzon
- Medical Faculty, Duta Wacana Christian University, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Uematsu T, Masuki H, Nakamura M, Kawabata H, Kitamura Y, Watanabe T, Watanabe T, Mochizuki T, Ushiki T, Kawase T. Metformin-suppressed platelet's function in vitro: Possible relation to delayed or failure of platelet-rich fibrin preparation. Toxicol In Vitro 2023; 93:105692. [PMID: 37673314 DOI: 10.1016/j.tiv.2023.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Platelet-rich fibrin (PRF) is a popular autologous blood-derived biomaterial that is used in regenerative therapy. Owing to its simple preparation without additional factors, the PRF quality directly reflects the characteristics of individual blood samples. Antiplatelet or anticoagulant drugs can hamper the successful preparation of PRF. We recently observed similar phenomena in metformin-taking type-2 diabetics (T2DM). Thus, we hypothesized that metformin interferes with platelet function, thereby suppressing coagulation. For practical reasons, leukocyte- and platelet-rich plasma was prepared from healthy male donors (n = 9-15, age: 26-80 years) and treated with metformin (1-10 mM) for 24-72 h. Intrinsic and extrinsic coagulation activities were evaluated using prothrombin time (PT) and activated partial thromboplastin time (ATPP). Platelet adhesion and aggregation assays were performed using ADP stimulation. Among the parameters tested, APTT was the most sensitive and was significantly prolonged in the concentration range of 1-10 mM in a time- and concentration-dependent manner. Although obtained from healthy platelets and relatively higher concentrations of metformin, these findings suggest that metformin may induce further dysfunction of platelets to suppress intrinsic coagulation activity in T2DM patients, leading to failure of PRF preparation. This phenomenon may not have a severe impact on clinical diabetology or hematology. However, clinicians using PRF are recommended to be more sensitive to such information to avoid unexpected events in clinical settings.
Collapse
Affiliation(s)
| | - Hideo Masuki
- Tokyo Plastic Dental Society, Kita-Ku, Tokyo, Japan
| | | | | | | | | | | | - Tomoharu Mochizuki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Ushiki
- Division of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan; Department of Transfusion Medicine, Cell Therapy and Regenerative Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan; Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Institute of Medicine and Dentistry, Niigata University, Niigata, Japan.
| |
Collapse
|
10
|
Zeng YC, Sobti M, Quinn A, Smith NJ, Brown SHJ, Vandenberg JI, Ryan RM, O'Mara ML, Stewart AG. Structural basis of promiscuous substrate transport by Organic Cation Transporter 1. Nat Commun 2023; 14:6374. [PMID: 37821493 PMCID: PMC10567722 DOI: 10.1038/s41467-023-42086-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Organic Cation Transporter 1 (OCT1) plays a crucial role in hepatic metabolism by mediating the uptake of a range of metabolites and drugs. Genetic variations can alter the efficacy and safety of compounds transported by OCT1, such as those used for cardiovascular, oncological, and psychological indications. Despite its importance in drug pharmacokinetics, the substrate selectivity and underlying structural mechanisms of OCT1 remain poorly understood. Here, we present cryo-EM structures of full-length human OCT1 in the inward-open conformation, both ligand-free and drug-bound, indicating the basis for its broad substrate recognition. Comparison of our structures with those of outward-open OCTs provides molecular insight into the alternating access mechanism of OCTs. We observe that hydrophobic gates stabilize the inward-facing conformation, whereas charge neutralization in the binding pocket facilitates the release of cationic substrates. These findings provide a framework for understanding the structural basis of the promiscuity of drug binding and substrate translocation in OCT1.
Collapse
Affiliation(s)
- Yi C Zeng
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ada Quinn
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Nicola J Smith
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Simon H J Brown
- School of Chemistry and Molecular Bioscience, Molecular Horizons, and Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, NSW, Australia
| | - Jamie I Vandenberg
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Molecular Cardiology and Biophysics Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Renae M Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Megan L O'Mara
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Giordo R, Posadino AM, Mangoni AA, Pintus G. Metformin-mediated epigenetic modifications in diabetes and associated conditions: Biological and clinical relevance. Biochem Pharmacol 2023; 215:115732. [PMID: 37541452 DOI: 10.1016/j.bcp.2023.115732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
An intricate interplay between genetic and environmental factors contributes to the development of type 2 diabetes (T2D) and its complications. Therefore, it is not surprising that the epigenome also plays a crucial role in the pathogenesis of T2D. Hyperglycemia can indeed trigger epigenetic modifications, thereby regulating different gene expression patterns. Such epigenetic changes can persist after normalizing serum glucose concentrations, suggesting the presence of a 'metabolic memory' of previous hyperglycemia which may also be epigenetically regulated. Metformin, a derivative of biguanide known to reduce serum glucose concentrations in patients with T2D, appears to exert additional pleiotropic effects that are mediated by multiple epigenetic modifications. Such modifications have been reported in various organs, tissues, and cellular compartments and appear to account for the effects of metformin on glycemic control as well as local and systemic inflammation, oxidant stress, and fibrosis. This review discusses the emerging evidence regarding the reported metformin-mediated epigenetic modifications, particularly on short and long non-coding RNAs, DNA methylation, and histone proteins post-translational modifications, their biological and clinical significance, potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
12
|
Schweighofer N, Strasser M, Obermayer A, Trummer O, Sourij H, Sourij C, Obermayer-Pietsch B. Identification of Novel Intronic SNPs in Transporter Genes Associated with Metformin Side Effects. Genes (Basel) 2023; 14:1609. [PMID: 37628660 PMCID: PMC10454417 DOI: 10.3390/genes14081609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Metformin is a widely used and effective medication in type 2 diabetes (T2DM) as well as in polycystic ovary syndrome (PCOS). Single nucleotide polymorphisms (SNPs) contribute to the occurrence of metformin side effects. The aim of the present study was to identify intronic genetic variants modifying the occurrence of metformin side effects and to replicate them in individuals with T2DM and in women with PCOS. We performed Next Generation Sequencing (Illumina Next Seq) of 115 SNPs in a discovery cohort of 120 metformin users and conducted a systematic literature review. Selected SNPs were analysed in two independent cohorts of individuals with either T2DM or PCOS, using 5'-3'exonucleaseassay. A total of 14 SNPs in the organic cation transporters (OCTs) showed associations with side effects in an unadjusted binary logistic regression model, with eight SNPs remaining significantly associated after appropriate adjustment in the discovery cohort. Five SNPs were confirmed in a combined analysis of both replication cohorts but showed different association patterns in subgroup analyses. In an unweighted polygenic risk score (PRS), the risk for metformin side effects increased with the number of risk alleles. Intronic SNPs in the OCT cluster contribute to the development of metformin side effects in individuals with T2DM and in women with PCOS and are therefore of interest for personalized therapy options.
Collapse
Affiliation(s)
- Natascha Schweighofer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Center for Biomarker Research in Medicine, CBmed, 8010 Graz, Austria
| | - Moritz Strasser
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Department of Health Studies, Institute of Biomedical, FH Joanneum University of Applied Sciences, 8020 Graz, Austria
| | - Anna Obermayer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, 8036 Graz, Austria
| | - Olivia Trummer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, 8036 Graz, Austria
| | - Caren Sourij
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (N.S.); (M.S.); (A.O.); (H.S.); barbar (B.O.-P.)
| |
Collapse
|
13
|
Dong Y, Qi Y, Jiang H, Mi T, Zhang Y, Peng C, Li W, Zhang Y, Zhou Y, Zang Y, Li J. The development and benefits of metformin in various diseases. Front Med 2023; 17:388-431. [PMID: 37402952 DOI: 10.1007/s11684-023-0998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/01/2023] [Indexed: 07/06/2023]
Abstract
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingbei Qi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Mi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yunkai Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wanchen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Lingang Laboratory, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
14
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|