1
|
Bozyel B, Doğan Ö, Elgün S, Özdemir B. Hypoxic Responses in Periodontal Tissues: Influence of Smoking and Periodontitis. J Clin Periodontol 2025; 52:249-257. [PMID: 39491490 PMCID: PMC11743020 DOI: 10.1111/jcpe.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
AIM This study aimed to investigate the hypoxic changes in periodontal tissues resulting from smoking and periodontitis by assessing levels of hypoxia-inducible factors (HIF-1α, HIF-2α, HIF-3α) and vascular endothelial growth factor (VEGF) in gingival crevicular fluid (GCF). MATERIALS AND METHODS The study comprised 22 periodontally healthy non-smokers (Group H), 22 periodontally healthy smokers (Group HS), 22 non-smokers with periodontitis (Group P) and 22 smokers with periodontitis (Group PS). Clinical periodontal parameters were documented, and GCF samples were collected and analysed using enzyme-linked immunosorbent assay (ELISA). RESULTS Significantly elevated levels of HIF-1α, HIF-3α and VEGF were observed in Groups HS, P and PS compared to Group H (p < 0.05). Moreover, higher HIF-2α levels were detected in the Groups HS and P compared to Group H (p < 0.05). Significant correlations were detected between all evaluated hypoxia biomarkers in the Group P (p < 0.05) except HIF-2α and HIF-3α. However, in the PS group, significant correlation appeared only between HIF-1α and HIF-2α (p < 0.05). CONCLUSION Our findings indicate that smoking and periodontitis induce comparable hypoxic effects in periodontal tissues, as evidenced by the evaluated biomarkers. Further research is warranted to gain a deeper understanding of the mechanisms underlying hypoxia in periodontal tissues.
Collapse
Affiliation(s)
- Bejna Bozyel
- Department of PeriodontologyFaculty of Dentistry, Gazi UniversityAnkaraTurkey
| | - Özlem Doğan
- Department of Medical BiochemistryFaculty of Medicine, Ankara UniversityAnkaraTurkey
| | - Serenay Elgün
- Department of Medical BiochemistryFaculty of Medicine, Ankara UniversityAnkaraTurkey
| | - Burcu Özdemir
- Department of PeriodontologyFaculty of Dentistry, Gazi UniversityAnkaraTurkey
| |
Collapse
|
2
|
Hyperbaric Oxygen Therapy Does Not Have a Negative Impact on Bone Signaling Pathways in Humans. Healthcare (Basel) 2021; 9:healthcare9121714. [PMID: 34946440 PMCID: PMC8701274 DOI: 10.3390/healthcare9121714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction: Oxygen is emerging as an important factor in the local regulation of bone remodeling. Some preclinical data suggest that hyperoxia may have deleterious effects on bone cells. However, its clinical relevance is unclear. Hence, we studied the effect of hyperbaric oxygen therapy (HBOT) on serum biomarkers reflecting the status of the Wnt and receptor activator of NF-κB ligand (RANKL) pathways, two core pathways for bone homeostasis. Materials and methods: This was a prospective study of 20 patients undergoing HBOT (mean age 58 yrs., range 35–82 yrs.) because of complications of radiotherapy or chronic anal fissure. Patients were subjected to HBOT (100% oxygen; 2.4 atmospheres absolute for 90 min). The average number of HBOT sessions was 20 ± 5 (range 8–31). Serum hypoxia-inducible factor 1-α (HIF1-α), osteoprotegerin (OPG), RANKL, and the Wnt inhibitors sclerostin and dickkopf-1 (DKK1) were measured at baseline and after HBOT by using specific immunoassays. Results: HIF-1α in eight patients with measurable serum levels increased from 0.084 (0.098) ng/mL at baseline to 0.146 (0.130) ng/mL after HBOT (p = 0.028). However, HBOT did not induce any significant changes in the serum levels of OPG, RANKL, sclerostin or DKK1. This was independent of the patients’ diagnosis, either neoplasia or benign. Conclusion: Despite the potential concerns about hyperoxia, we found no evidence that HBOT has any detrimental effect on bone homeostasis.
Collapse
|
3
|
Janjić K, Samiei M, Moritz A, Agis H. The Influence of Pro-Inflammatory Factors on Sclerostin and Dickkopf-1 Production in Human Dental Pulp Cells Under Hypoxic Conditions. Front Bioeng Biotechnol 2019; 7:430. [PMID: 31921831 PMCID: PMC6927906 DOI: 10.3389/fbioe.2019.00430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
Sclerostin (Sost) and dickkopf (Dkk)-1 are inhibitors of the Wnt signaling pathway that plays a role in regenerative processes. Hypoxia-based strategies are used for regenerative approaches, but the influence of hypoxia on Sost and Dkk-1 production in a pro-inflammatory environment is unclear. The aim of this study was to assess if pro-inflammatory molecules have an influence on Sost and Dkk-1 production in dental pulp cells (DPC) under normoxia and hypoxia. Human DPC were treated with interleukin (IL)-1β, tumor necrosis factor (TNF)α or transforming growth factor (TGF)β, with L-mimosine (L-MIM) or hypoxia or a combination. Sost and Dkk-1 mRNA and protein levels were measured with qPCR and western blot, respectively. TNFα, TGFβ, L-MIM, or combined treatment did not modulate Sost and Dkk-1. IL-1β downregulated Sost at the mRNA level. Hypoxia alone and together with inflammatory markers downregulated Dkk-1 at the mRNA level. Sost and Dkk-1 protein production was below the detection limit. In conclusion, there is a differential effect of hypoxia and IL-1β on the mRNA production of Sost and Dkk-1. Pro-inflammatory molecules do not further modulate the effects of L-MIM or hypoxia on Sost and Dkk-1 production in DPC.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mohammad Samiei
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
4
|
Samiei M, Janjić K, Cvikl B, Moritz A, Agis H. The role of sclerostin and dickkopf-1 in oral tissues - A review from the perspective of the dental disciplines. F1000Res 2019; 8:128. [PMID: 31031968 PMCID: PMC6468704 DOI: 10.12688/f1000research.17801.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is of high relevance in the development, homeostasis, and regeneration of oral tissues. Therefore, Wnt signaling is considered to be a potential target for therapeutic strategies. The action of Wnt is tightly controlled by the inhibitors sclerostin (SOST) and Dickkopf (DKK)-1. Given the impact of SOST and DKK-1 in hard tissue formation, related diseases and healing, it is of high relevance to understand their role in oral tissues. The clinical relevance of this knowledge is further underlined by systemic and local approaches which are currently in development for treating a variety of diseases such as osteoporosis and inflammatory hard tissue resorption. In this narrative review, we summarize the current knowledge and understanding on the Wnt signaling inhibitors SOST and DKK-1, and their role in physiology, pathology, and regeneration in oral tissues. We present this role from the perspective of the different specialties in dentistry, including endodontics, orthodontics, periodontics, and oral surgery.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, 1090, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| |
Collapse
|
5
|
Janjić K, Bauer P, Edelmayer M, Cvikl B, Schädl B, Moritz A, Agis H. Angiogenin production in response to hypoxia and l-mimosine in periodontal fibroblasts. J Periodontol 2019; 90:674-681. [PMID: 30549272 DOI: 10.1002/jper.18-0172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND A major mediator of angiogenesis is angiogenin, which is expressed in the early phase of healing in oral tissue engineering strategies. It is unclear how angiogenin is regulated in the periodontal tissue. The objective of this study was to reveal the regulation of angiogenin in response to hypoxia and the hypoxia mimetic agent l-mimosine in periodontal fibroblasts. METHODS Human fibroblasts of the periodontal ligament (PDLF) and the gingiva (GF) in monolayer and spheroid cultures were exposed to hypoxia or l-mimosine. The production of angiogenin was evaluated at mRNA and protein levels with reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Echinomycin, an inhibitor of hypoxia-inducible factor (HIF)-1 activity, was used to test the involvement of HIF-1. RESULTS Our data show that hypoxia and l-mimosine can increase angiogenin mRNA and protein levels in PDLF monolayer cultures. In GF monolayer cultures, we found an increase of angiogenin at the mRNA level in response to hypoxia. The increase of angiogenin can be blocked by inhibition of HIF-1 signaling via echinomycin. In PDLF and GF spheroid cultures, the impact of hypoxia and l-mimosine did not reach the level of significance. CONCLUSION Hypoxia and the hypoxia mimetic agent l-mimosine can increase the production of angiogenin via HIF-1 signaling in PDLF monolayer cultures but not in spheroid cultures. GF were less sensitive to the impact of hypoxia and l-mimosine. Overall, these results suggest a link between hypoxia, HIF-1 signaling and angiogenin in the periodontium.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Peter Bauer
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michael Edelmayer
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|