1
|
Schuler T, Roderick S, Wong S, Kejda A, Grimberg K, Lowe T, Kipritidis J, Back M, Bergamin S, Carroll S, Hruby G, Jayamanne D, Kneebone A, Lamoury G, Morgia M, Stevens M, Brown C, Gallego B, Porter B, Booth J, Eade T. Real-World Implementation of Simulation-Free Radiation Therapy (SFRT-1000): A Propensity Score-Matched Analysis of 1000 Consecutive Palliative Courses Delivered in Routine Care. Int J Radiat Oncol Biol Phys 2025; 121:585-595. [PMID: 39353478 DOI: 10.1016/j.ijrobp.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE The feasibility of simulation-free radiation therapy (SFRT) has been demonstrated but information regarding its routine care impact and scalability is lacking. METHODS AND MATERIALS In this single-institution, retrospective cohort study, all patients receiving palliative radiation therapy at an Australian tertiary cancer center were eligible for consideration of SFRT unless mask immobilization, a stereotactic technique, or a definitive dose was indicated. Coprimary endpoints were SFRT utilization, impact on consultation-to-RT time, and on-couch treatment duration. Timing metrics were compared with a contemporary local cohort that received simulation-based palliative radiation therapy using unadjusted Wilcoxon rank-sum tests and a propensity score-matched regression. Electronic patient-reported outcomes captured 2-week toxicity and pain response. RESULTS: Between April 2018 and February 2024, 2849 palliative radiation courses were delivered, of which 1904 were eligible. Of the 1904 courses, 1000 (52.5% SFRT utilization) received SFRT, including 668 using intensity-modulated radiation therapy/volumetric-modulated arc therapy. A total of 788 individual patients received SFRT and the median age was 71 years (IQR, 61-80) with 59% being male and 42% being Eastern Collaborative Oncology Group 2-4. SFRT utilization increased from 41% to 54% between years 2018-2019 and 2022-2024. SFRT reduced median consultation-to-RT time from 7.0 to 5.1 days (P < .0001) corresponding to an adjusted average treatment effect in the treated of -2.1 days (95% CI, -2.8 to -1.3). SFRT increased median on-couch treatment duration from 17.8 to 20.5 minutes (P < .0001; adjusted average treatment effect in the treated 2.6 minutes, 95% CI, 1.3-3.9). Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events grade 3 acute toxicity was 9% and at 4 weeks after RT, patients with moderate/severe pain at baseline (≥5/10) had a mean pain reduction of 3.5 points (7.1-3.6; P < .0001). CONCLUSIONS: Using widely available technologies, the SFRT-1000 cohort demonstrates routine care scalability with patient-centered and workflow benefits. SFRT is an attractive new paradigm implementable in most settings following adaptation to local requirements. Thus, SFRT opens new avenues to potentially improve access to palliative RT, which remains a global area of need.
Collapse
Affiliation(s)
- Thilo Schuler
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia.
| | - Stephanie Roderick
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Shelley Wong
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Alannah Kejda
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Kylie Grimberg
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Toby Lowe
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - John Kipritidis
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Back
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Bergamin
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Susan Carroll
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - George Hruby
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Dasantha Jayamanne
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Kneebone
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Gillian Lamoury
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Marita Morgia
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Mark Stevens
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Chris Brown
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Blanca Gallego
- Centre for Big Data Research in Health, University of New South Wales, Sydney New South Wales, Australia
| | - Brian Porter
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Jeremy Booth
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Eade
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
O'Neil M, Laba JM, Nguyen TK, Lock M, Goodman CD, Huynh E, Snir J, Munro V, Alce J, Schrijver L, Lemay S, MacDonald T, Warner A, Palma DA. Diagnostic CT-Enabled Planning (DART): Results of a Randomized Trial in Palliative Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:69-76. [PMID: 38613562 DOI: 10.1016/j.ijrobp.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Using diagnostic computed tomography (dCT) scans instead of CT simulation (CTsim) scans can increase departmental efficiency and reduce patient burden. The goal of the DART trial was to assess the efficacy and acceptability of dCT-based planning workflows with a focus on patient experiences, plan deliverability and adequacy of target coverage, and workflows. METHODS AND MATERIALS Patients undergoing same-day CTsim and treatment for palliative radiation therapy to thoracic, abdominopelvic, or proximal limb targets with a recent dCT (within 28 days) in a reproducible position were eligible. After stratifying by target type (bone or soft tissue vs. visceral), participants were randomized (1:2 ratio) between CTsim-based (CTsim arm) vs. dCT-based planning (dCT arm). The primary endpoint was time in center (TIC), defined as total time spent in the cancer center on first day of treatment, from first radiation department appointment to first fraction completion. Secondary endpoints included plan deliverability, adequacy of target coverage, and stakeholder acceptability. RESULTS Thirty-three patients (42 treatment sites) were enrolled between June 2022 and April 2023. The median age was 72 (interquartile range [IQR]: 67-78), 73% were male, and the most common primary cancers were lung (33%), prostate (24%), and breast (12%). The most common dose and fractionations were 8 Gy in 1 and 20 Gy in 5 fractions (50% and 43% of plans, respectively). TIC was 4.7 ± 1.1 hours (mean ± SD) in the CTsim arm vs. 0.41 ± 0.14 hours in the dCT arm (P < .001). All dCT plans were deliverable. All plans in both arms were rated as "acceptable" (80% CTsim; 81% dCT) or "acceptable with minor deviation" (20% CTsim; 19% dCT). Patient perception of acceptability was similar in both arms with the exception of time burden, which was rated as "acceptable" by 50% in the CTsim arm vs. 90% in the dCT arm (P = .025). CONCLUSION dCT-based radiation planning substantially reduced TIC without detriment in plan deliverability or quality and had a tangible impact on patient experience with reduced patient-reported time burden.
Collapse
Affiliation(s)
- Melissa O'Neil
- Department of Radiation Therapy, London Health Sciences Centre, London, Ontario, Canada
| | - Joanna M Laba
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Timothy K Nguyen
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Michael Lock
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Christopher D Goodman
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Elizabeth Huynh
- Department of Medical Biophysics, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Jonatan Snir
- Department of Medical Biophysics, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Vikki Munro
- Department of Radiation Therapy, London Health Sciences Centre, London, Ontario, Canada
| | - Jenna Alce
- Department of Radiation Therapy, London Health Sciences Centre, London, Ontario, Canada
| | - Lidia Schrijver
- Department of Radiation Therapy, London Health Sciences Centre, London, Ontario, Canada
| | - Sylvia Lemay
- Department of Radiation Therapy, London Health Sciences Centre, London, Ontario, Canada
| | - Tara MacDonald
- Department of Radiation Therapy, London Health Sciences Centre, London, Ontario, Canada
| | - Andrew Warner
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada.
| |
Collapse
|
3
|
Zhuang T, Parsons D, Desai N, Gibbard G, Keilty D, Lin MH, Cai B, Nguyen D, Chiu T, Godley A, Pompos A, Jiang S. Simulation and pre-planning omitted radiotherapy (SPORT): a feasibility study for prostate cancer. Biomed Phys Eng Express 2024; 10:025019. [PMID: 38241733 DOI: 10.1088/2057-1976/ad20aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
This study explored the feasibility of on-couch intensity modulated radiotherapy (IMRT) planning for prostate cancer (PCa) on a cone-beam CT (CBCT)-based online adaptive RT platform without an individualized pre-treatment plan and contours. Ten patients with PCa previously treated with image-guided IMRT (60 Gy/20 fractions) were selected. In contrast to the routine online adaptive RT workflow, a novel approach was employed in which the same preplan that was optimized on one reference patient was adapted to generate individual on-couch/initial plans for the other nine test patients using Ethos emulator. Simulation CTs of the test patients were used as simulated online CBCT (sCBCT) for emulation. Quality assessments were conducted on synthetic CTs (sCT). Dosimetric comparisons were performed between on-couch plans, on-couch plans recomputed on the sCBCT and individually optimized plans for test patients. The median value of mean absolute difference between sCT and sCBCT was 74.7 HU (range 69.5-91.5 HU). The average CTV/PTV coverage by prescription dose was 100.0%/94.7%, and normal tissue constraints were met for the nine test patients in on-couch plans on sCT. Recalculating on-couch plans on the sCBCT showed about 0.7% reduction of PTV coverage and a 0.6% increasing of hotspot, and the dose difference of the OARs was negligible (<0.5 Gy). Hence, initial IMRT plans for new patients can be generated by adapting a reference patient's preplan with online contours, which had similar qualities to the conventional approach of individually optimized plan on the simulation CT. Further study is needed to identify selection criteria for patient anatomy most amenable to this workflow.
Collapse
Affiliation(s)
- Tingliang Zhuang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Neil Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Grant Gibbard
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Dana Keilty
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Mu-Han Lin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Bin Cai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Dan Nguyen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Tsuicheng Chiu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Andrew Godley
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Arnold Pompos
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, United States of America
| |
Collapse
|
4
|
Bush A, Herchko S, Chellini A, Orande C, Harrell A, Wear M, Rutenberg M, Attia A, Trifiletti D, Peterson J, May B, Vallow L, Hoppe B. Prompt Pain Relief From Bone Metastases: The Virtual Simulation Program. Adv Radiat Oncol 2024; 9:101361. [PMID: 38405308 PMCID: PMC10885572 DOI: 10.1016/j.adro.2023.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Rapid pain relief for patients with bone metastases can be a challenge due to the lengthy and complex radiation therapy workflow. The purpose of this study was to evaluate the time (in days) between initial radiation oncology consultation and start of palliative radiation treatment after implementing an alternative virtual simulation palliative workflow. Methods and Materials Patients meeting strict criteria were selected for virtual simulation, which included only those with painful bone metastases who were recommended palliative radiation therapy using standard anterior-posterior/posterior-anterior or opposed lateral fields. A recent (within 30 days) diagnostic computed tomography (CT) scan clearly visualizing the target volume was required for treatment planning. For comparison, a reference group of 40 consecutive patients with bone metastases who underwent in-person CT simulation before virtual simulation implementation was reviewed. Results Forty-five patients were treated for painful bone metastases as part of the virtual simulation program from May 2021 to October 2022. Regarding travel distance, 23 patients lived locally (<50 miles from the treatment center) and 22 patients were distant (≥50 miles from the treatment center). Average time from consultation to treatment for all patients undergoing virtual simulation was 3.7 days, compared with 7.5 days for patients undergoing in-person CT simulation (3.8 days sooner, on average; P ≤ .001). Before full implementation of the virtual simulation program, 5 eligible patients participated in a virtual simulation pilot from April 2021 to May 2021, in which each patient was contoured and planned on both a pre-existing diagnostic CT scan and a standard CT simulation scan. For virtual simulation-based plans, the average V90, V95, and V99 were 99.99%, 99.87%, and 96.70%. No significant planning target volume (PTV) coverage difference was found on subsequent in-person CT simulation scans. Conclusions The virtual simulation program decreased the time from consultation to start of treatment by more than 50% for patients recommended palliative radiation therapy for painful bone metastases. This benefit was most significant for outpatients traveling ≥50 miles for treatment. Virtual simulation-based planning can be considered for patients anxious to proceed with radiation therapy quickly or in underserved settings with limited transportation options to regional treatment centers.
Collapse
|
5
|
Agnoux E, Renan A, Faivre JC. Clinical trials that will change practices: News in palliative radiotherapy. Cancer Radiother 2023; 27:746-753. [PMID: 37891036 DOI: 10.1016/j.canrad.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023]
Abstract
Palliative radiotherapy is used to alleviate cancer-related symptoms. Symptomatic responses to palliative radiotherapy may however take several weeks, meaning that patients need to survive long enough to derive a real benefit. Oncologists can be optimistic when estimating survival for patients with advanced cancer and as a consequence some patients receiving palliative radiotherapy die before experiencing any gain. Models of patient survival have limited accuracy, particularly for predicting whether patients will die within the next 30 days. Dedicated rapid access palliative radiotherapy clinics, in which patients are assessed, simulated and treated on the same day, reduce the number of patient visits to the radiation oncology department and hence the burden on the patient as well as costs. Teleconsultation and advanced practice nurses can play a crucial role in providing rapid access to palliative radiotherapy in a dedicated palliative radiotherapy service. Single-fraction palliative radiotherapy should be offered to eligible patients if they are able to attend treatment and could potentially benefit from symptom palliation, irrespective of predicted life expectancy. Technical and organizational innovations have been proposed in order to dispense with the computed tomography scanner by carrying out the dosimetry on a recent diagnostic scanner or a magnetic resonance imaging scanner with integrated linear acceleration system. Stereotactic body radiation therapy makes it possible to envisage greater and more lasting analgesic benefits in patients with painful bone metastasis and good prognosis. Flash radiotherapy remains at the preclinical stage.
Collapse
Affiliation(s)
- E Agnoux
- Academic Department of Radiation Therapy & Brachytherapy, institut de cancérologie de Lorraine, centre Alexis-Vautrin, Vandœuvre-lès-Nancy, France
| | - A Renan
- Academic Department of Radiation Therapy & Brachytherapy, institut de cancérologie de Lorraine, centre Alexis-Vautrin, Vandœuvre-lès-Nancy, France
| | - J-C Faivre
- Academic Department of Radiation Therapy & Brachytherapy, institut de cancérologie de Lorraine, centre Alexis-Vautrin, Vandœuvre-lès-Nancy, France.
| |
Collapse
|