1
|
Liu Z, Zhu L, He H, Hou M, Jia W, Jin L, Xi Q, Zhang X. Novel splicing mutations in PATL2 and WEE2 cause oocyte degradation and fertilization failure. J Assist Reprod Genet 2024; 41:3337-3345. [PMID: 39476306 PMCID: PMC11707231 DOI: 10.1007/s10815-024-03260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE To determine the genetic cause of infertility in two unrelated families of female patients suffering from oocyte degeneration and fertilization failure. METHODS Whole exome sequencing and Sanger sequencing were performed to identify the disease-causing genes of infertility in two unrelated female patients. Minigene experiments were conducted to confirm the effect of splice site mutations on mRNA splicing. RESULTS In two unrelated female infertility patients, a novel compound heterozygous splicing mutation (c.516-1G > T and c.877-1G > A) in PATL2 gene and a novel homozygous splicing mutation (c.1222-1G > A) in WEE2 gene were identified. Minigene splicing assays revealed that the c.516-1G > T mutation in PATL2 resulted in a deletion of 8 bases in mRNA that causes a frameshift (c.516-523delTCCCCCAG, p.P173Q fs*13). The c.877-1G > A mutation led to the skipping of exons 10 and 11 and retention of introns 8-9 in PATL2 mRNA. The c.1222-1G > A mutation resulted in the deletion of exon 9 in WEE2 mRNA, leading to an in-frame deletion of 57 amino acids in the WEE2 protein (p.408-464del). CONCLUSION Our study discovered novel splicing mutations in PATL2 and WEE2, further expanding the mutation spectrum of these two genes and providing guidance for genetic counseling and diagnosis of female infertility.
Collapse
Affiliation(s)
- Zhenxing Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui He
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Weimin Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingsong Xi
- Oncology Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
2
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
3
|
Li R, Mei M, Zhou L, Zhao H, Yang M, Li Y, Chen X, Wang W, Yuan P. Biallelic Recessive Mutations in TLE6 and NLRP5 Cause Female Infertility Characterized by Human Early Embryonic Arrest. Hum Mutat 2024; 2024:9278518. [PMID: 40225929 PMCID: PMC11919057 DOI: 10.1155/2024/9278518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 04/15/2025]
Abstract
Preimplantation embryonic developmental arrest (EDA) is a common cause of unexplained female infertility. Genetic factors are believed to be one of the primary causes contributing to EDA. In this study, we identify four novel compound heterozygous mutations in TLE6 and NLRP5, in two infertile female patients experiencing recurrent EDA, using whole-exome sequencing. Functional analysis revealed that the two splicing mutations in TLE6 (c.541+2dupT) and NLRP5 (c.2957+4A>G) resulted in aberrant RNA splicing, leading to abnormal truncations of the corresponding proteins. In vitro experiments further validated that a missense mutation in NLRP5 led to increased mRNA and protein expression levels compared to wild type, when transfected into HEK293T cells. Immunofluorescence analysis confirmed the decay of the expression of TLE6 protein. Additionally, RNA sequencing results revealed significantly higher expression levels of some maternal genes in mutated embryos with TLE6 mutations, possibly suggesting the disrupted clearance of maternal mRNA and the failure of embryo genome activation. These results highlight the role of biallelic recessive effects associated with TLE6 and NLRP5 variants in embryonic development, thereby widening the scope of the genetic landscape.
Collapse
Affiliation(s)
- Ruiqi Li
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
- IVF CenterDepartment of Obstetrics and GynecologyThe First People's Hospital of Kashgar, Kashgar, China
- IVF CenterReproductive and Genetic Hospital of Kapok, Hainan 571400, China
| | - Mei Mei
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Ling Zhou
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Haijing Zhao
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Min Yang
- State Key Laboratory of BiocontrolSchool of Life SciencesSun Yat-sen University, Guangzhou, China
| | - Yingshi Li
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xiaoli Chen
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Wenjun Wang
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Ping Yuan
- IVF CenterDepartment of Obstetrics and GynecologySun Yat-sen Memorial HospitalSun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
4
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Guo H, Wu H, Yan Z, Yin M, Wu L, Li B. Novel WEE2 homozygous mutations c.1346C>T and c.949A>T identified in primary infertile women due to unexplained fertilization failure. Clin Genet 2023; 104:700-704. [PMID: 37772619 DOI: 10.1111/cge.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
The occurrence of unexplained fertilization failure can have profound psychological and financial consequences for couples struggling with infertility, and its pathogenesis remains unclear. Increasing evidence highlights genetic basis of unexplained fertilization failure occurrence. Here, we identified one novel homozygous nonsense mutation (c.949A>T), one novel homozygous missense mutation (c.1346C>T), and three reported homozygous mutations (c.585G>C, c.1006_1007insTA, c.1221G>A) in six unrelated probands, showing similar manifestations of unexplained fertilization failure. This finding expands the spectrum of WEE2 mutations, highlighting the critical role of WEE2 in fertilization process, and provides a basis for the prognostic value of testing for WEE2 mutations in primary infertile couples with unexplained fertilization failure.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingru Yin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Nozawa K, Liao Z, Satouh Y, Geng T, Ikawa M, Monsivais D, Matzuk MM. Oocyte-specific Wee1-like protein kinase 2 is dispensable for fertility in mice. PLoS One 2023; 18:e0289083. [PMID: 37527245 PMCID: PMC10393137 DOI: 10.1371/journal.pone.0289083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Wee1-like protein kinase 2 (WEE2) is an oocyte-specific protein tyrosine kinase involved in the regulation of oocyte meiotic arrest in humans. As such, it has been proposed as a candidate for non-hormonal female contraception although pre-clinical models have not been reported. Therefore, we developed two novel knockout mouse models using CRISPR/Cas9 to test loss-of-function of Wee2 on female fertility. A frameshift mutation at the Wee2 translation start codon in exon 2 had no effect on litter size, litter production, or the ability of oocytes to maintain prophase I arrest. Because of the lack of a reproductive phenotype, we additionally generated a Wee2 allele with a large deletion by removing all coding exons. While there was no difference in the total number of litters produced, homozygous Wee2 female knockout mice with the larger deletion produced fewer pups than heterozygous littermates. Furthermore, there was no difference for key reproductive parameters measured in the mouse models, including ovarian weight, number of ovulated oocytes, or oocytes that underwent in vitro maturation. Therefore, as loss of Wee2 in mice shows only minor effects on overall fecundity, contraceptive development with WEE2 should consider exploiting alternative properties such as gain-of-function or protein-protein interactions, as Wee2 loss-of-function is likely complicated by biological redundancies with other proteins co-expressed in oocytes.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zian Liao
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yuhkoh Satouh
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Ting Geng
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
7
|
Zhang X, Hu C, Wu L. Advances in the study of genetic factors and clinical interventions for fertilization failure. J Assist Reprod Genet 2023; 40:1787-1805. [PMID: 37289376 PMCID: PMC10371943 DOI: 10.1007/s10815-023-02810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
Fertilization failure refers to the failure in the pronucleus formation, evaluating 16-18 h post in vitro fertilization or intracytoplasmic sperm injection. It can be caused by sperm, oocytes, and sperm-oocyte interaction and lead to great financial and physical stress to the patients. Recent advancements in genetics, molecular biology, and clinical-assisted reproductive technology have greatly enhanced research into the causes and treatment of fertilization failure. Here, we review the causes that have been reported to lead to fertilization failure in fertilization processes, including the sperm acrosome reaction, penetration of the cumulus and zona pellucida, recognition and fusion of the sperm and oocyte membranes, oocyte activation, and pronucleus formation. Additionally, we summarize the progress of corresponding treatment methods of fertilization failure. This review will provide the latest research advances in the genetic aspects of fertilization failure and will benefit both researchers and clinical practitioners in reproduction and genetics.
Collapse
Affiliation(s)
- Xiangjun Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Congyuan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
8
|
Xu M, Wu W, Zhao M, Chung JPW, Li TC, Chan DYL. Common dysmorphic oocytes and embryos in assisted reproductive technology laboratory in association with gene alternations. Int J Biochem Cell Biol 2022; 152:106298. [PMID: 36122887 DOI: 10.1016/j.biocel.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Amorphic or defected oocytes and embryos are commonly observed in assisted reproductive technology (ART) laboratories. It is believed that a proper gene expression at each stage of embryo development contributes to the possibility of a decent-quality embryo leading to successful implantation. Many studies reported that several defects in embryo morphology are associated with gene expressions during in vitro fertilization (IVF) treatment. There is lacking literature review on summarizing common morphological defects about gene alternations. In this review, we summarized the current literature. We selected 64 genes that have been reported to be involved in embryo morphological abnormalities in animals and humans, 30 of which were identified in humans and might be the causes of embryonic changes. Five papers focusing on associations of multiple gene expressions and embryo abnormalities using RNA transcriptomes were also included during the search. We have also reviewed our time-lapse image database with over 3000 oocytes/embryos to show morphological defects possibly related to gene alternations reported previously in the literature. This holistic review can better understand the associations between gene alternations and morphological changes. It is also beneficial to select important biomarkers with strong evidence in IVF practice and reveal their potential application in embryo selection. Also, identifying genes may help patients with genetic disorders avoid unnecessary treatments by providing preimplantation genetic testing for monogenic/single gene defects (PGT-M), reduce embryo replacements by less potential, and help scientists develop new methods for oocyte/embryo research in the near future.
Collapse
Affiliation(s)
- Murong Xu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Reproductive Medicine, Department of Obstetrics and Gynaecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Solovova OA, Chernykh VB. Genetics of Oocyte Maturation Defects and Early Embryo Development Arrest. Genes (Basel) 2022; 13:1920. [PMID: 36360157 PMCID: PMC9689903 DOI: 10.3390/genes13111920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
Various pathogenic factors can lead to oogenesis failure and seriously affect both female reproductive health and fertility. Genetic factors play an important role in folliculogenesis and oocyte maturation but still need to be clarified. Oocyte maturation is a well-organized complex process, regulated by a large number of genes. Pathogenic variants in these genes as well as aneuploidy, defects in mitochondrial genome, and other genetic and epigenetic factors can result in unexplained infertility, early pregnancy loss, and recurrent failures of IVF/ICSI programs due to poor ovarian response to stimulation, oocyte maturation arrest, poor gamete quality, fertilization failure, or early embryonic developmental arrest. In this paper, we review the main genes, as well as provide a description of the defects in the mitochondrial genome, associated with female infertility.
Collapse
|
10
|
Weiner HS, Ulrich ND, Hipp L, Hammoud A, Xu M, Schon SB. Total fertilization failure with in vitro fertilization-intracytoplasmic sperm injection related to WEE2 mutation highlights emerging importance of genetic causes of in vitro fertilization failure. F S Rep 2022; 3:355-360. [PMID: 36568932 PMCID: PMC9783144 DOI: 10.1016/j.xfre.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022] Open
Abstract
Objective To report a unique case of total fertilization failure (TFF) after in vitro fertilization with intracytoplasmic sperm injection related to homozygous WEE2 gene mutation and summarize the current literature and management of TFF. Design Case report. Setting Academic fertility center. Patients A 25-year-old woman and her 35-year-old partner with a history of near-complete fertilization failure after 2 cycles of in vitro fertilization/intracytoplasmic sperm injection. Interventions Consultation with medical and commercial genetic testing for WEE2, PLCZ1, and TLE6. Main Outcome Measures Oocyte fertilization. Results The patient was homozygous for WEE2 pathogenic variant impacting oocyte activation and resulting in infertility. Conclusions In the setting of TFF, early consideration should be given to genetic testing to assist couples in clinical decision-making and help limit the financial and emotional burden associated with unsuccessful fertility intervention.
Collapse
Affiliation(s)
| | - Nicole D. Ulrich
- University of Michigan Medical School, Ann Arbor, Michigan,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine
| | - Lauren Hipp
- Department of Genetic Medicine, Michigan Medicine, Ann Arbor, Michigan
| | - Ahmad Hammoud
- Department of Obstetrics and Gynecology, Oakland William Beaumont School of Medicine, Rochester, Michigan,IVF Michigan Fertility Centers, Bloomfield Hills, Michigan
| | - Min Xu
- University of Michigan Medical School, Ann Arbor, Michigan,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine
| | - Samantha B. Schon
- University of Michigan Medical School, Ann Arbor, Michigan,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine,Reprint requests: Samantha B. Schon, M.D., Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Michigan Medicine University of Michigan Medical School, Michigan Medicine, 1500 E Medical Center Drive, Ann Arbor, Michigan 4109.
| |
Collapse
|
11
|
Xue Y, Cheng X, Xiong Y, Li K. Gene mutations associated with fertilization failure after in vitro fertilization/intracytoplasmic sperm injection. Front Endocrinol (Lausanne) 2022; 13:1086883. [PMID: 36589837 PMCID: PMC9800785 DOI: 10.3389/fendo.2022.1086883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Fertilization failure during assisted reproductive technologies (ART) is often unpredictable, as this failure is encountered only after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) have been performed. The etiology of fertilization failure remains elusive. More and more mutations of genes are found to be involved in human fertilization failure in infertile patients as high throughput sequencing techniques are becoming widely applied. In this review, the mutations of nine important genes expressed in sperm or oocytes, PLCZ1, ACTL7A, ACTL9, DNAH17, WEE2, TUBB8, NLRP5, ZP2, and TLE6, were summarized and discussed. These abnormalities mainly have shown Mendelian patterns of inheritance, including dominant and recessive inheritance, although de novo mutations were present in some cases. The review revealed the crucial roles of each reported gene in the fertilization process and summarized all known mutations and their corresponding phenotypes. The review suggested the mutations might become promising targets for precision treatments in reproductive medicine. Moreover, our work will provide some helpful clues for genetic counseling, risk prediction, and optimizing clinical treatments for human infertility by supplying the useful and timely information on the genetic causes leading to fertilization failure.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Kun Li,
| |
Collapse
|
12
|
Wang A, Huang S, Liu M, Wang B, Wu F, Zhu D, Zhao X. Clinical exome sequencing identifies novel compound heterozygous mutations of the WEE2 gene in primary infertile women with fertilization failure. Gynecol Endocrinol 2021; 37:1096-1101. [PMID: 33904356 DOI: 10.1080/09513590.2021.1916458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE The genetic basis of fertilization failure after intracytoplasmic sperm injection (ICSI) is largely unknown and the aim of this study is to investigate the genetic causes of fertilization failure in primary infertile women. METHODS Six affected women diagnosed with infertility and fertilization failure were recruited. The genetically pathogenic factor of their fertilization failures were investigated by clinical exome sequencing. One hundred healthy controls were verified by Sanger sequencing. RESULTS Novel compound heterozygous mutations c.625G > T and c.759-2A > G of WEE2 in one affected individual were revealed by clinical exome sequencing. Trios analysis of the mutations represented an autosomal recessive pattern. The nonsense mutation c.625G > T (p.Glu209*) indicated the truncation of the WEE2 protein and c.759-2A > G was predicted to affect the splicing. CONCLUSIONS The novel variants extend the spectrum of WEE2 mutations, which promotes the prognostic value of testing for WEE2 mutations in infertile women with fertilization failure.
Collapse
Affiliation(s)
- Ancong Wang
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, PR China
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, PR China
| | - Shan Huang
- Department of Respiratory Medicine, Linyi Hospital of traditional Chinese Medicine, Linyi, PR China
| | - Min Liu
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, PR China
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, PR China
| | - Baosong Wang
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, PR China
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, PR China
| | - Fengxia Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Shandong University, Jinan, PR China
| | - Dongyi Zhu
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, PR China
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, PR China
| | - Xiangyu Zhao
- Department of Medical Genetics, Linyi People's Hospital, Linyi, PR China
| |
Collapse
|
13
|
Jin J, Tong X, Zhang YL, Yang W, Ma Y, Ren P, Zhou F, Zhang S. Novel WEE2 compound heterozygous mutations identified in patients with fertilization failure or poor fertilization. J Assist Reprod Genet 2021; 38:2861-2869. [PMID: 34476630 PMCID: PMC8608989 DOI: 10.1007/s10815-021-02285-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 12/04/2022] Open
Abstract
PURPOSE To study associations between novel WEE2 mutations and patients with fertilization failure or poor fertilization. METHODS Thirty-one Chinese patients who underwent treatment with assisted reproductive technology and suffered from repeated (at least two times) total fertilization failure (TFF) or a low fertilization rate were enrolled. Genomic DNA was extracted from patients for whole-exome sequencing. Suspicious mutations were validated by Sanger sequencing. WEE2 protein levels in oocytes from affected patients were examined by immunofluorescence. Disruptive effects of mutations on WEE2 protein stability, subcellular localization, and kinase function were analyzed through western blotting, immunofluorescence, and flow cytometry in HeLa cells. RESULTS Three of thirty-one (9.6%) enrolled patients had six compound heterozygous mutations of the WEE2 gene, and three of them were reported here for the first time (c.115_116insT, c.756_758delTGA, and c.C1459T). Oocytes from affected patients showed decreased WEE2 immunofluorescence signals. In vitro experiments showed that the mutant WEE2 gene caused reduced WEE2 protein levels or cellular compartment translocation in HeLa cells, leading to decreased levels of the phosphorylated Cdc2 protein. Compared with the wild-type WEE2 protein, the mutant WEE2 proteins were also found to have different effects on the cell cycle. CONCLUSION Three novel compound heterozygous WEE2 variants were found in patients with pronucleus formation failure. This study provides new evidence that WEE2 mutations result in loss of function, which could result in fertilization failure.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
14
|
Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet 2021; 38:993-1002. [PMID: 33895934 PMCID: PMC8190202 DOI: 10.1007/s10815-021-02196-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
Successful human reproduction requires gamete maturation, fertilization, and early embryonic development. Human oocyte maturation includes nuclear and cytoplasmic maturation, and abnormalities in the process will lead to infertility and recurrent failure of IVF/ICSI attempts. In addition, the quality of oocytes/embryos in the clinic can only be determined by morphological markers, and there is currently a lack of molecular markers for determining oocyte quality. As the number of patients undergoing IVF/ICSI has increased, many patients have been identified with recurrent IVF/ICSI failure. However, the genetic basis behind this phenotype remains largely unknown. In recent years, a few mutant genes have been identified by us and others, which provide potential molecular markers for determining the quality of oocytes/embryos. In this review, we outline the genetic determinants of abnormalities in the processes of oocyte maturation, fertilization, and early embryonic development. Currently, 16 genes (PATL2, TUBB8, TRIP13, ZP1, ZP2, ZP3, PANX1, TLE6, WEE2, CDC20, BTG4, PADI6, NLRP2, NLRP5, KHDC3L, and REC114) have been reported to be the causes of oocyte maturation arrest, fertilization failure, embryonic arrest, and preimplantation embryonic lethality. These abnormalities mainly have Mendelian inheritance patterns, including both dominant inheritance and recessive inheritance, although in some cases de novo mutations have also appeared. In this review, we will introduce the effects of each gene in the specific processes of human early reproduction and will summarize all known variants in these genes and their corresponding phenotypes. Variants in some genes have specific effects on certain steps in the early human reproductive processes, while other variants result in a spectrum of phenotypes. These variants and genetic markers will lay the foundation for individualized genetic counseling and potential treatments for patients and will be the target for precision treatments in reproductive medicine.
Collapse
Affiliation(s)
- Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
15
|
Christodoulaki A, Boel A, Tang M, De Roo C, Stoop D, Heindryckx B. Prospects of Germline Nuclear Transfer in Women With Diminished Ovarian Reserve. Front Endocrinol (Lausanne) 2021; 12:635370. [PMID: 33692760 PMCID: PMC7937897 DOI: 10.3389/fendo.2021.635370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diminished ovarian reserve (DOR) is associated with a reduced quantity and quality of the retrieved oocytes, usually leading to poor reproductive outcomes which remain a great challenge for assisted reproduction technology (ART). Women with DOR often have to seek for oocyte donation, precluding genetically related offspring. Germline nuclear transfer (NT) is a novel technology in ART that involves the transfer of the nuclear genome from an affected oocyte/zygote of the patient to the cytoplast of an enucleated donor oocyte/zygote. Therefore, it offers opportunities for the generation of genetically related embryos. Currently, although NT is clinically applied only in women with serious mitochondrial DNA disorders, this technology has also been proposed to overcome certain forms of female infertility, such as advanced maternal age and embryo developmental arrest. In this review, we are proposing the NT technology as a future treatment option for DOR patients. Strikingly, the application of different NT strategies will result in an increase of the total number of available reconstituted embryos for DOR patients.
Collapse
Affiliation(s)
- Antonia Christodoulaki
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Maoxing Tang
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chloë De Roo
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|