1
|
Mabrouk DM, El-Akad RH, Afifi AH, Sharaf HA, El-Sharkawy SL, El Makawy AI. In vivo and in silico studies on the potential role of garden cress oil in attenuating methotrexate-induced inflammation and apoptosis in liver. Sci Rep 2025; 15:6178. [PMID: 39979397 PMCID: PMC11842783 DOI: 10.1038/s41598-025-89550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Methotrexate (MTX) has been used in high doses for cancer therapy and low doses for autoimmune diseases. It is proven that methotrexate-induced hepatotoxicity occurs even at relatively low doses. It is known that garden cress has anti-inflammatory, antioxidant, and hepatoprotective properties. This study investigates the potential alleviating effect of garden cress oil (GCO) against MTX-induced hepatotoxicity in rats. The chemical composition of GCO was assessed using GC/MS analysis. Liver damage was studied using hepatotoxicity biomarkers, molecular, and histological analysis. Also, the effects of GCO on TNF-α and caspase-3 proteins were evaluated through molecular docking studies. The results demonstrated that MTX caused liver damage, as seen by elevated levels of the liver enzymes ALT, AST, and ALP. Likewise, MTX showed clear signs of apoptosis, such as increased mRNA expression levels of BAX, Caspase-3, and P53, and increased liver inflammation indicated by higher levels of TNF-α expression. MTX exhibited significant liver damage, as demonstrated by histological examination. Treatment with GCO effectively alleviated the apoptotic effects of MTX, provided protection against inflammation, and restored histological alterations. GC/MS metabolite profiling of garden cress oil revealed the presence of several phytoconstituents, including tocopherols, erucic acid, sesamolin, linoleic acid, vaccenic acid, oleic acid, stearic acid, and palmitic acid, that showed strong binding affinities toward TNF-α and caspase-3 proteins in molecular docking studies, which could explain the anti-apoptotic and anti-inflammatory potential of GCO.
Collapse
Affiliation(s)
- Dalia M Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, P.O.12622, Giza, Egypt
| | - Radwa H El-Akad
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Ahmed H Afifi
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Hafiza A Sharaf
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, P.O.12622, Giza, Egypt
| | - Sonia L El-Sharkawy
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, P.O.12622, Giza, Egypt
| | - Aida I El Makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, P.O.12622, Giza, Egypt.
| |
Collapse
|
2
|
El-Gindy YM, Zahran SM, Ahmed MH, Idres AY, Morshady SA. Influence of garden cress seeds supplementation on immunity, hormonal status, and milk quality during the last third of pregnancy and lactation period of rabbit does. BMC Vet Res 2024; 20:535. [PMID: 39609908 PMCID: PMC11606222 DOI: 10.1186/s12917-024-04381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
During the last third of pregnancy period, rabbits are exposed to many challenges, such as health complications and oxidative stress. The present study aims to use garden cress seeds (GAC) as a natural antioxidant to mitigate these challenges and evaluate its effects on reproductive performance, immunity, hormones, protein profile and milk quality. A total of 24 pregnant V-Line rabbits (pregnant at 20 days proved by palpation), with an initial body weight of 2395.83 g and about 6-7 months of age, were randomly distributed to 4 groups, the control group was fed the basal diet without GAC, the other treated groups GAC 3, GAC 4.5 and GAC 6 were fed the basal diet supplemented with 3, 4.5, and 6% GAC, respectively. The experiment lasted six weeks. The results revealed that treated female rabbits with different levels of GAC did not have a noticeable effect on milk yield, average daily milk yield, or most of the milk analysis parameters (milk density, total solids, solids not fat, lactose, ash, and protein). On the other hand, GAC showed a significant increase in milk fat, and GAC 3% rabbits displayed a higher percentage of milk fat (p < 0.050) than the other groups. Likewise, treatment with GAC also had a significant impact on serum total protein, globulin, IgG, and IgM. The 3% GAC rabbits showed significantly higher total protein, globulin, and IgM values than the control group. However, all GAC treatments significantly improved serum IgG and the best value was found in the 3% GAC group. In conclusion, our results demonstrated that feeding lactating rabbits a diet supplemented with GAC could be considered a good strategy to enhance immunity, protein profile, MY and milk fat. The best results were obtained with the GAC 3% treatment.
Collapse
Affiliation(s)
- Yassmine M El-Gindy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, P.O. Box 21531, Alexandria, Egypt.
| | - Soliman M Zahran
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, P.O. Box 21531, Alexandria, Egypt
| | - Mohamed H Ahmed
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, P.O. Box 21531, Alexandria, Egypt
| | - Azza Y Idres
- Animal Production Department, Faculty of Agriculture, Omar Al-Mukhtar University, Elbea, Libya
| | - Sabrin A Morshady
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, P.O. Box 21531, Alexandria, Egypt
| |
Collapse
|
3
|
Sabra MS, Mohammed AA, Hassanein KMA, Ahmed AAN, Hassan D, Abdel-Lah ES. Novel drug therapy of acute hepatic failure induced in rats by a combination of tadalafil and Lepidium sativum. BMC Complement Med Ther 2024; 24:104. [PMID: 38413963 PMCID: PMC10900715 DOI: 10.1186/s12906-024-04406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Hepatocyte death and a systemic inflammatory response are the outcome of a complex chain of events mediated by numerous inflammatory cells and chemical mediators. The point of this study was to find out if tadalafil and/or Lepidium sativum (L. sativum) could help people who have been exposed to carbon tetrachloride (CCL4) and are experiencing acute moderate liver failure. This was especially true when the two were used together. METHOD AND MATERIALS To cause mild liver failure 24 h before sacrifice, a single oral dosage of CCL4 (2.5 mL/kg b.w.) (50% in olive oil) was utilized. Furthermore, immunohistochemical expression of nuclear factor kappa B (NF-κB) as well as histological abnormalities were performed on liver tissue. RESULTS The results showed that tadalafil and/or L. sativum, especially in combination, performed well to cure acute mild liver failure caused by CCL4. This was demonstrated by a decrease in NF-κB expression in the liver tissue and an improvement in organ damage markers observed in the blood and liver tissues. Furthermore, such therapy reduced interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels in the liver tissue. It's worth noting that the tested combination resulted in greater liver improvement. CONCLUSIONS According to the findings, tadalafil and L. sativum, particularly in combination, have the ability to protect the liver from the negative effects of CCL4 exposure. Because of its capacity to improve liver function, restore redox equilibrium, and decrease inflammatory mediators, it is a prospective option for mitigating the negative effects of common environmental pollutants such as CCL4.
Collapse
Affiliation(s)
- Mahmoud S Sabra
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ahmed A Mohammed
- Department of animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Khaled M Ahmed Hassanein
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ahmed A N Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Assiut branch, Assiut, 71526, Egypt
| | - Dalia Hassan
- Department of animal and poultry hygiene and environmental sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ebtsam S Abdel-Lah
- Pharmacology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
4
|
Islam Shawon S, Nargis Reyda R, Qais N. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon 2024; 10:e25340. [PMID: 38356556 PMCID: PMC10864916 DOI: 10.1016/j.heliyon.2024.e25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The liver is an essential organ that helps the body with immunity, metabolism, and detoxification, among other functions. Worldwide, liver illnesses are a leading cause of mortality and disability. There are few effective treatment choices, but they frequently have unfavorable side effects. Investigating the potential of medicinal plants and their bioactive phytoconstituents in the prevention and treatment of liver disorders has gained more attention in recent years. An assessment of the hepatoprotective potential of medicinal plants and their bioactive secondary metabolites is the goal of this thorough review paper. To determine their hepatoprotective activity, these plants were tested against liver toxicity artificially induced in rats, mice and rabbits by chemical agents such as carbon tetrachloride (CCl4), paracetamol (PCM), thioacetamide (TAA), N-nitrosodiethylamine, d-galactosamine/lipopolysaccharide, antitubercular medicines (rifampin, isoniazid) and alcohol. To find pertinent research publications published between 1989 and 2022, a comprehensive search of electronic bibliographic databases (including Web of Science, SpringerLink, ScienceDirect, Google Scholar, PubMed, Scopus, and others) was carried out. The investigation comprised 203 plant species from 81 families in total. A thorough discussion was mentioned regarding the hepatoprotective qualities of plants belonging to several families, such as Fabaceae, Asteraceae, Lamiaceae, and Euphorbiaceae. The plant groups Asteraceae and Fabaceae were the most frequently shown to have hepatoprotective properties. The phytochemical constituents namely flavonoids, phenolic compounds, and alkaloids exhibited the highest frequency of hepatoprotective action. Also, some possible mechanism of action of some active constituents from medicinal plants was discussed in brief which were found in some studies. In summary, the information on medicinal plants and their potentially hepatoprotective bioactive phytoconstituents has been consolidated in this review which emphasizes the importance of further research to explore the efficacy and safety of these natural remedies for various liver ailments.
Collapse
Affiliation(s)
- Shahparan Islam Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rashmia Nargis Reyda
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
5
|
Jasim A, Albukhaty S, Sulaiman GM, Al-Karagoly H, Jabir MS, Abomughayedh AM, Mohammed HA, Abomughaid MM. Liposome Nanocarriers Based on γ Oryzanol: Preparation, Characterization, and In Vivo Assessment of Toxicity and Antioxidant Activity. ACS OMEGA 2024; 9:3554-3564. [PMID: 38284009 PMCID: PMC10809378 DOI: 10.1021/acsomega.3c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/09/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
The present study aimed to develop and characterize liposome nanocarriers based on γ oryzanol and evaluate their potential in vitro and in vivo toxicity and antioxidant effects. The liposomes were physicochemically characterized using various techniques, including dynamic light scattering (DLS) for size and polydispersity index (PDI) measurements and ζ-potential analysis. The in vitro toxicity assessments were performed using hemolysis and MTT assays on the HS5 cell line. In vivo, acute oral toxicity was evaluated by using LD50 assays in mice. Additionally, antioxidant activity was assessed through biochemical analysis of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and liver tissue catalase, malondialdehyde (MDA), and glutathione (GSH) levels. The results revealed that the liposomes exhibited a uniform and spherical morphology with suitable physicochemical properties for drug delivery applications. The in vitro cytotoxicity and hemolysis assays and the in vivo LD50 experiment indicated the potential safety of γ oryzanol liposomes, especially at lower concentrations. In addition, the assessment of liver enzymes, i.e., ALT and AST, and the antioxidant markers further revealed the safety of the formulation, particularly for the liver as a highly sensitive soft organ. Overall, the liposome nanocarriers based on γ oryzanol were successfully formulated and expressed potential safety, supporting their application for the purposes of drug delivery and therapeutic interventions, particularly for hepatocellular and antioxidant therapies; however, further investigations for preclinical and clinical studies could be the future prospects for liposome nanocarriers based on γ oryzanol to explore the safety and efficacy of these nanocarriers in various disease models and clinical settings.
Collapse
Affiliation(s)
- Ahmed
J. Jasim
- Department
of Biomedical Engineering, University of
Technology, Baghdad 10066, Iraq
| | - Salim Albukhaty
- Department
of Chemistry, College of Science, University
of Misan, Maysan 62001, Iraq
- College
of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Ghassan M. Sulaiman
- Division
of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Hassan Al-Karagoly
- Department
of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58001, Iraq
| | - Majid S. Jabir
- Division
of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Ali M. Abomughayedh
- Pharmacy
Department, Aseer Central Hospital, Ministry
of Health, Asir 62523, Saudi Arabia
| | - Hamdoon A. Mohammed
- Department
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Department
of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Mosleh M. Abomughaid
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| |
Collapse
|
6
|
Amtaghri S, Eddouks M. Comprehensive Review on the Genus Haloxylon: Pharmacological and Phytochemical Properties. Endocr Metab Immune Disord Drug Targets 2024; 24:1146-1160. [PMID: 38243976 DOI: 10.2174/0118715303270345231121112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 01/22/2024]
Abstract
AIMS This review aimed to review the biological, pharmacological, and phytochemical aspects of the genus Haloxylon. BACKGROUND Plants of the genus Haloxylon have been used for a long time in traditional medicine, and they are distributed in the western Mediterranean region to the Middle East, Iran, Mongolia, Burma, and southwest China. The studied parts of Haloxylon species include aerial parts, leaves, branches, seeds, roots, rhizosphere, soil, and whole plants, used to treat several diseases, including sexual disorders, hepatobiliary disorders, eye disorders, skin diseases and hemorrhoids, diarrhea, and effective in the treatment of various ailments such as snake bite, stomach ache, diabetes, wounds, earache and sciatica pain, windbreak dune fixation, feeding of livestock and firewood. OBJECTIVES Till now, no review on the genus Haloxylon has been conducted. This review aimed to provide updated information on the genus Haloxylon, including traditional medicinal uses, valorization and exploitation of medicinal plants, phytochemistry, botanical characterization, pharmacological and toxicological research focusing on the medicinal properties of several Haloxylon species, especially their antioxidant, antibacterial, anti-inflammatory, cytotoxic and antifungal activities, as well as the effect of each bioactive molecule isolated from these species and their pharmacological use, including the preclinical evaluation of new drugs. MATERIALS AND METHODS The present work was conducted using various scientific databases, including Science Direct, Scopus, PubMed, Google Scholar, etc. Correct plant names were verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS Among all species of the Chenopodiaceae family, 6 species of the Haloxylon genus have approved antioxidant activity, 5 species have antibacterial activity, 3 species have anti-inflammatory activity, 2 species have cytotoxic activity, and 3 species have antifungal activity. The majority of the chemical constituents of this plant include flavonoids, alkaloids, phenols, saponins, glycosides, and tannins. Among them, the main bioactive constituents would be present in the alkaloid fraction. The study of more than 9 Haloxylon plants has identified more than 46 compounds. Pharmacological research proved that crude extracts and some pure compounds obtained from Haloxylon had activities for the treatment of different diseases. The objective of the present study was focused on antioxidant, antibacterial, anti-inflammatory, cytotoxic and antifungal diseases. From the study of the phytochemistry of the Haloxylon family, it was concluded that all studied plants had active compounds. Among them, 11 isolated molecules have medicinal activities with antioxidant properties, 10 molecules showed antibacterial effects, more than 6 molecules have anti-inflammatory properties, more than 9 isolated molecules have medicinal activities against cytotoxic diseases, and more than 28 molecules have antifungal effects. Therefore, the safety of Haloxylon herbal medicine should be considered a top priority in the early stages of development and clinical trials. CONCLUSION Several previously conducted studies have validated multiple traditional uses of Haloxylon species. Further research is needed on Haloxylon plants before they can be fully utilized in the clinic as a potent drug candidate, as researchers are mainly focusing on alkaloids, diterpenoids, and triterpenoids, whereas there are many other types of compounds that may possess novel biological activities.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team, Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University, Avenue Ibn Battouta, B.P. 1014, Rabat 10000, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
7
|
Ahmad A, Mishra A, Nabi R, Ahmad IZ. Preclinical Safety Assessment of Lepidium sativum L. Seed Extract and its Nanoparticles via Acute and Subacute Oral Administration. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:350-360. [PMID: 38847137 DOI: 10.2174/1872210517666230417103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 01/04/2025]
Abstract
BACKGROUND Lepidium sativum (LS) seed extract has various pharmacological properties, such as antioxidant, hepatoprotective, and anticancer activities. However, the translation of L. sativum seed extract to the clinical phase is still tedious due to its bioavailability and stability issues. This problem can be solved by encapsulating it in a nanodelivery system to improve its therapeutic potency. METHODS In this study, we have determined and compared the in vivo toxicity of ethanolic extracts of L. sativum seeds (EELS) and solid lipid nanoparticles (SLNs). To conduct toxicity (acute and subacute toxicity) assessments, EELS and SLNs were orally administered to Swiss albino mice. Animal survival, body weight, the weight of vital organs in relation to body weight, haematological profile, biochemistry profile, and histopathological alterations were examined. RESULTS Animals administered with 2000 mg/kg and 5000 mg/kg in an acute toxicity study exhibited no toxicological symptoms regarding behaviour, gross pathology, and body weight. As per a study on acute toxicity, the LD50 (lethal dose) for SLNs and EELS was over 400 mg/kg and over 5000 mg/kg, respectively. When animals were given SLNs (50 and 100 mg/kg, orally) and EELS (250, 500, and 1000 mg/kg, orally) for 28 days, subacute toxicity study did not exhibit any clinical changes. There were no differences in weight gain, haematological parameters, or biochemical parameters compared to the control groups (p > 0.05). The organs of the treated animals showed no abnormalities in the histological analysis (liver, heart, kidney, and spleen). CONCLUSION The result confirms ethanolic extracts of L. sativum seeds and their SLNs to not have harmful effects following acute and subacute administration to mice. For further studies, patents available on Lepidium may be referred for its preclinical and clinical applications.
Collapse
Affiliation(s)
- Asad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, 226026, Uttar Pradesh, India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
| | - Rabia Nabi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Iffat Zareen Ahmad
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Locknow, 226026, Uttar Pradesh, India
| |
Collapse
|
8
|
Gupta S, Gupta R. Research Update on the Therapeutic Potential of Garden Cress ( Lepidium sativum Linn.) with Threatened Status. Curr Drug Res Rev 2024; 16:369-380. [PMID: 37929722 DOI: 10.2174/0125899775273877231023102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Garden cress (Lepidium sativum) has been used in India for medicinal purposes since the Vedic era. Garden cress, a native of Egypt and southwest Asia, is a small perennial edible herb that has been used to treat many diseases for centuries. The seeds, leaves as well as roots have medicinal properties. The seeds are rich in protein, fat, calcium, and iron and have high nutritional value. They are considered to be galactagogue, anticarcinogenic, antidiabetic, antiasthmatic and antidiarrheal. Leaves, seeds, and aerial parts extracts are found to have alkaloids, flavonoids, glycosides, polypeptides, vitamins, minerals, proteins, fats, and carbohydrates. Lepidium sativum is known for its pungent odor due to the several volatile oils and has been used to treat various conditions, including respiratory disorders, muscle pain, inflammation, and bone fractures in the past. Lepidium sativum is a fast-growing annual herb; in India, it is commonly known as Chandrasoor. Whole fruits or seeds are used, fresh or dried, as a seasoning with a peppery flavor. Boiled seeds are consumed in drinks by Arabs, either ground in honey or as an infusion in hot milk. The seed oil can be used for illumination and soap making. Additionally, limited awareness and conservation efforts have further contributed to its threatened status. Recognizing the importance of preserving this valuable plant species is crucial for maintaining biodiversity and ensuring its availability for future generations. Furthermore, this review explores the potential benefits of Lepidium sativum in different domains. Its nutritional value and health benefits make it a promising candidate for addressing malnutrition and improving overall well-being. The presence of bioactive compounds suggests its potential use in functional foods, pharmaceuticals, and natural medicines for various ailments. Moreover, Lepidium sativum exhibits antimicrobial and insecticidal properties, offering potential applications in agriculture and pest control. The current review discussed the nutritional, potential benefits and pharmacological effects of Lepidium sativum.
Collapse
Affiliation(s)
- Suchita Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
9
|
Kamel FO, Karim S, Bafail DAO, Aldawsari HM, Kotta S, Ilyas UK. Hepatoprotective effects of bioactive compounds from traditional herb Tulsi ( Ocimum sanctum Linn) against galactosamine-induced hepatotoxicity in rats. Front Pharmacol 2023; 14:1213052. [PMID: 37860117 PMCID: PMC10582332 DOI: 10.3389/fphar.2023.1213052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
Ocimum sanctum L. (Tulsi; Family: libiaceae), also known as "The Queen of herbs" or "Holy Basil," is an omnipresent, multipurpose plant that has been used in folk medicine of many countries as a remedy against several pathological conditions, including anticancer, antidiabetic, cardio-protective, antispasmodic, diaphoretic, and adaptogenic actions. This study aims to assess O. sanctum L.'s hepatoprotective potential against galactosamine-induced toxicity, as well as investigate bioactive compounds in each extract and identify serum metabolites. The extraction of O. sanctum L as per Ayurveda was simultaneously standardized and quantified for biochemical markers: rutin, ellagic acid, kaempferol, caffeic acid, quercetin, and epicatechin by HPTLC. Hepatotoxicity was induced albino adult rats by intra-peritoneal injection of galactosamine (400 mg/kg). The quantified hydroalcoholic and alcoholic extract of O. sanctum L (100 and 200 mg/kg body weight/day) were compared for evaluation of hepatoprotective potential, which were assessed in terms of reduction in histological damage, change in serum enzymes such as AST, ALT, ALP and increase TBARS. Twenty chemical constituents of serum metabolites of O. sanctum were identified and characterized based on matching recorded mass spectra by GC-MS with those obtained from the library-Wiley/NIST. We evaluated the hepatoprotective activity of various fractions of hydroalcoholic extracts based on the polarity and investigated the activity at each phase (hexane, chloroform, and ethyl acetate) in vitro to determine how they affected the toxicity of CCL4 (40 mM) toward Chang liver cells. The ethyl acetate fraction of the selected plants had a higher hepatoprotective activity than the other fractions, so it was used in vacuum liquid chromatography (VLC). The ethyl acetate fraction contains high amounts of rutin (0.34% w/w), ellagic acid (2.32% w/w), kaempferol (0.017% w/w), caffeic acid (0.005% w/w), quercetin (0.038% w/w), and epicatechin (0.057% w/w) which are responsible for hepatoprotection. In comparison to standard silymarin, isolated bioactive molecules displayed the most significant hepatoprotective activity in Chang liver cells treated to CCl4 toxicity. The significant high hepatoprotection provided by standard silymarin ranged from 77.6% at 100 μg/ml to 83.95% at 200 μg/ml, purified ellagic acid ranged from 70% at 100 μg/ml to 81.33% at 200 μg/ml, purified rutin ranged from 63.4% at 100 μg/ml to 76.34% at 200 μg/ml purified quercetin ranged from 54.33% at 100 μg/ml to 60.64% at 200 μg/ml, purified epicatechin ranged from 53.22% at 100 μg/ml to 65.6% at 200 μg/ml, and purified kaempferol ranged from 52.17% at 100 μg/ml to 60.34% at 200 μg/ml. These findings suggest that the bioactive compounds in O. sanctum L. have significant protective effects against galactosamine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fatemah O. Kamel
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Duaa Abdullah Omer Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - U. K. Ilyas
- Department of Pharmacognosy and Phytochemistry, Moulana College of Pharmacy, Perinthalmanna, Kerala, India
| |
Collapse
|
10
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
11
|
Balgoon MJ. Garden Cress ( Lepidium sativum) Seeds Ameliorated Aluminum-Induced Alzheimer Disease in Rats Through Antioxidant, Anti-Inflammatory, and Antiapoptotic Effects. Neuropsychiatr Dis Treat 2023; 19:865-878. [PMID: 37077707 PMCID: PMC10106954 DOI: 10.2147/ndt.s401740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
Background Bioaccumulation of aluminum in the brain is associated with adverse neuroinflammatory and neurodegenerative changes, such as those seen in Alzheimer's disease (AD). Objective This study aimed to assess the impact of the administration of Lepidium sativum (LS) extract on behavioral, biochemical, and cerebral histopathological changes in rats with AlCl3-induced AD and explore the mechanism behind this effect. Materials and Methods This study was conducted on 40 male albino rats divided into four groups (n=10): LS (control, 20 mg/kg body weight for 8 weeks), AD (AlCl3, 10 mg/kg body weight), and an LS-treated AD group. Behavioral assessment included radial armed maze and active avoidance training tests. Proinflammatory cytokines, oxidant/antioxidant markers, Aβ, AchE, tau protein, TGFβ1, homocysteine, folic acid, and vitamin B12 were biochemically assessed in the serum. The cerebral cortex was histopathologically examined. Results AlCl3 administration significantly impaired rats' memory, indicating AD-like behavioral changes, significantly increased (P<0.001) oxidative stress markers, enhanced proinflammatory cytokines, and significantly increased AChE (P<0.001) adding to cytotoxic effects and neuronal loss in the cerebral cortex. LS administration significantly improved the antioxidant parameters, reduced proinflammatory cytokines, and alleviated AD-associated histopathological changes. Conclusion LS ameliorated AlCl3-induced changes through its antioxidant, anti-inflammatory, and antiapoptotic effects, suggesting that it has a neuroprotective effect.
Collapse
Affiliation(s)
- Maha J Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Correspondence: Maha J Balgoon, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, Tel +966555762237, Email
| |
Collapse
|
12
|
Changes in Pharmacokinetics and Pharmacodynamics of Losartan in Experimental Diseased Rats Treated with Curcuma longa and Lepidium sativum. Pharmaceuticals (Basel) 2022; 16:ph16010033. [PMID: 36678530 PMCID: PMC9862944 DOI: 10.3390/ph16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The current study investigated “pharmacodynamics and pharmacokinetics interactions” of losartan with Curcuma longa (CUR) and Lepidium sativum (LS) in hypertensive rats. Hypertension was induced by oral administration of L-NAME (40 mg/kg) for two weeks. Oral administration of CUR or LS shows some substantial antihypertensive activity. The systolic blood pressure (SBP) of hypertensive rats was decreased by 7.04% and 8.78% 12 h after treatment with CUR and LS, respectively, as compared to rats treated with L-NAME alone. LS and CUR display the ability to potentiate the blood pressure-lowering effects of losartan in hypertensive rats. A greater decrease in SBP, by 11.66% and 13.74%, was observed in hypertensive rats treated with CUR + losartan and LS + losartan, respectively. Further, both the investigated herbs, CUR and LS, caused an increase in plasma concentrations of losartan in hypertensive rats. The AUC0-t, AUC0-inf and AUMC0-inf of losartan were increased by 1.25-fold, 1.28-fold and 1.09-fold in hypertensive rats treated with CUR + losartan. A significant (p < 0.05) increase in AUC0-t (2.41-fold), AUC0-inf (3.86-fold) and AUMC0-inf (8.35-fold) of losartan was observed in hypertensive rats treated with LS + losartan. The present study affirms that interactions between CUR or LS with losartan alter both “pharmacokinetics and pharmacodynamics” of the drug. Concurrent administration of losartan with either CUR or LS would require dose adjustment and intermittent blood pressure monitoring for clinical use in hypertensive patients. Additional investigation is necessary to determine the importance of these interactions in humans and to elucidate the mechanisms of action behind these interactions.
Collapse
|
13
|
HEKMATSHOAR Y, ÖZKAN T, RAHBAR SAADAT Y. Evidence for Health-Promoting Properties of Lepidium sativum L.: An Updated Comprehensive Review. Turk J Pharm Sci 2022; 19:714-723. [PMID: 36544402 PMCID: PMC9780570 DOI: 10.4274/tjps.galenos.2021.07504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Lepidium sativum L. is a common herb distributed worldwide, used as a food ingredient and therapeutic agent in traditional medicine for treating health-related disorders. L. sativum and its extracts have been described to possess numerous biological activities including antimicrobial, antidiabetic, antioxidant, antidiarrheal, anticancer, and numerous health-promoting effects in in vivo and in vitro studies. The purpose of this review is to summarize the findings describing important biological functions and therapeutic effects of L. sativum in various cell lines and animal models. In this review, the English-language articles were gathered from electronic databases including Web of Science, PubMed and Google Scholar with no time limit applied to any database. The search terms used in this review include, "Lepidium sativum L." and/or "chemical composition", "health benefits", "antimicrobial", "antioxidant", "anticancer", "diuretic", "nephro-protection", "antidiarrheal", "antidiabetic", "anti-asthmatic", "neuroprotection", "metabolic", "bone fracture", and "reproductive performance". Additional and eligible studies were collected from reference lists of appropriate articles. The information presented will be helpful to attract more interest toward medicinal plants by defining and developing novel clinical applications and new drug formulations in the future. Pre-clinical studies showed that L. sativum possesses potent health-promoting effects involving various molecular mechanisms. Taken all together, data suggested that identified herbal plants such as L. sativum, can be exploited as nutritional and therapeutic agents to combat various ailments. Despite much research in this field, further comprehensive in vitro/in vivo studies and clinical trials are needed to identify the mechanisms underlying the biological and therapeutic activities of L. sativum.
Collapse
Affiliation(s)
- Yalda HEKMATSHOAR
- University of Missouri, School of Medicine, Department of Child Health, Columbia, USA
- Altınbaş University, School of Medicine, Medical Biology Department, İstanbul, Türkiye
| | - Tülin ÖZKAN
- University of Missouri, School of Medicine, Department of Child Health, Columbia, USA
- Ankara University, Faculty of Medicine, Department of Medical Biology, Ankara, Türkiye
| | | |
Collapse
|
14
|
Anti-inflammatory and Immunomodulatory Properties of Lepidium sativum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3645038. [PMID: 35937400 PMCID: PMC9348929 DOI: 10.1155/2022/3645038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022]
Abstract
Background Lepidium sativum (garden cress) is a member of the Brassicaceae family that has been utilized for medicinal and culinary purposes in centuries. Anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective, antihypertensive, antiasthmatic, and hypoglycemic properties are found in various portions of the plant. The anti-inflammatory, antioxidant, and immunomodulatory effects of L. sativum were the subject of this review. Methods The required information was gathered by searching the Web of Science, PubMed, and Scopus databases for the terms anti-inflammatory, antioxidant, immunomodulatory, immune system, and Lepidium sativum. Up until February 2022, the search was conducted. Results TNF-, IL-6, IL-1, NO, iNOS, and HO-1 levels were reduced, indicating that L. sativum has anti-inflammatory and immunomodulatory properties. Flavonoids, alkaloids, cyanogenic glycosides, tannins, glucosinolates, sterols, and triterpenes are the key chemical components that contribute to the anti-inflammatory effects. In peritoneal neutrophils, L. sativum reduced oxidative stress by scavenging free radicals, as evidenced by a drop in superoxide anion and an increase in glutathione. Conclusion The anti-inflammatory, antioxidant, and immunomodulatory activities of L. sativum could be explored in clinical trials to treat inflammatory and immune system illnesses.
Collapse
|
15
|
Ahmad A, Tabassum H, Nabi R, Mishra A, Ahmad IZ. Solid Lipid Nanoparticles of Lepidium Sativum L Seed Extract: Formulation, Optimization and In vitro Cytotoxicity Studies. Drug Res (Stuttg) 2022; 72:284-293. [PMID: 35504297 DOI: 10.1055/a-1800-5956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The current study focused on important bioactive compounds in plants that make them pharmacologically valuable. Therefore, this study was aimed to develop Lepidium sativum (L. sativum) seed extract loaded solid lipid nanoparticles and explore its cytotoxic effect on human liver cancer cells (HepG2 cells). The ethanolic extract of L. sativam used to develop L. sativum seed extract loaded solid lipid nanoparticles (SLNs) was analyzed by gas chromatography-mass spectrometry, thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) for phytochemical profiling. The L. sativum seed extract loaded SLNs were efficaciously prepared by the nanoprecipitation method and screened on the basis of physicochemical properties. The L. sativum seed extract loaded SLN-2 was characterized using various parameters like particle size (237.1±0.104), % entrapment efficiency (80±1.15), zeta potential (42.1±0.102) and % drug release (45% at the end 8 hours and release the entire amount in 12 h). The SLN-2 formulation was optimized based on the recipient factor, and SLN-2 was used to further evaluate the in vitro cytotoxicity of HepG2 cells in a dose-dependent manner by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. The IC50 value of SLN2 was 52.37 ug/ml and sub IC50 26.1 ug/ml at 24 h and 48 h, respectively. Thus, we concluded that L. sativum extract loaded SLN-2 could act as an alternative therapy, possibly controlling therapeutic action by making a substantial reduction in side effects.
Collapse
Affiliation(s)
- Asad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Heena Tabassum
- Department of Biotechnology, Biotechnology and Bioinformatics Institute, Pune, Maharastra, India
| | - Rabia Nabi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Iffat Zareen Ahmad
- Department of Biotechnology, Biotechnology and Bioinformatics Institute, Pune, Maharastra, India
| |
Collapse
|
16
|
Painuli S, Quispe C, Herrera-Bravo J, Semwal P, Martorell M, Almarhoon ZM, Seilkhan A, Ydyrys A, Rad JS, Alshehri MM, Daştan SD, Taheri Y, Calina D, Cho WC. Nutraceutical Profiling, Bioactive Composition, and Biological Applications of Lepidium sativum L. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2910411. [PMID: 35096265 PMCID: PMC8791756 DOI: 10.1155/2022/2910411] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Abstract
The roots, leaves, and seeds of Lepidium sativum L., popularly known as Garden cress in different regions, have high economic importance; although, the crop is particularly cultivated for the seeds. In traditional medicine, this plant has been reported to possess various biological activities. This review is aimed at providing updated and critical scientific information about the traditional, nutritional, phytochemical, and biological activities of L. sativum. In addition, the geographic distribution is also reviewed. The comprehensive literature search was carried out with the help of different search engines PubMed, Web of Science, and Science Direct. This review highlighted the importance of L. sativum as an edible herb that possesses a wide range of therapeutic properties along with high nutritional values. Preclinical studies (in vitro and in vivo) displayed anticancer, hepatoprotective, antidiabetic, hypoglycemic, antioxidant, antimicrobial, gastrointestinal, and fracture/bone healing activities of L. sativum and support the clinical importance of plant-derived bioactive compounds for the treatment of different diseases. Screening of literature revealed that L. sativum species and their bioactive compounds may be a significant source for new drug compounds and also could be used against malnutrition. Further clinical trials are needed to effectively assess the actual potential of the species and its bioactive compounds.
Collapse
Affiliation(s)
- Sakshi Painuli
- Himalayan Environmental Studies and Conservation Organization, Dehradun, 248006 Uttarakhand, India
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to Be University, Dehradun, 248 002 Uttarakhand, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ainur Seilkhan
- Educational Program, Geography, Environment and Service Sector, Abai Kazakh National Pedagogical University, Almaty, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Javad Sharifi Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
17
|
Shakeel F, Alamer MM, Alam P, Alshetaili A, Haq N, Alanazi FK, Alshehri S, Ghoneim MM, Alsarra IA. Hepatoprotective Effects of Bioflavonoid Luteolin Using Self-Nanoemulsifying Drug Delivery System. Molecules 2021; 26:7497. [PMID: 34946581 PMCID: PMC8703857 DOI: 10.3390/molecules26247497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022] Open
Abstract
Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.
Collapse
Affiliation(s)
- Faiyaz Shakeel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Moad M. Alamer
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nazrul Haq
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.H.); (F.K.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (I.A.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Ibrahim A. Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (I.A.A.)
| |
Collapse
|
18
|
Nazir S, El-Sherif AA, Abdel-Ghani NT, Ibrahim MAA, Hegazy MEF, Atia MAM. Lepidium sativum Secondary Metabolites (Essential Oils): In Vitro and In Silico Studies on Human Hepatocellular Carcinoma Cell Lines. PLANTS 2021; 10:plants10091863. [PMID: 34579396 PMCID: PMC8470406 DOI: 10.3390/plants10091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the greatest cause of cancer-related death in the world. Garden cress (Lepidium sativum) seeds have been proven to possess extraordinary antioxidant, anti-inflammatory, hypothermic, and analgesic properties. In this study, in vitro cytotoxic efficiency evaluation of L. sativum fractions was performed against two hepatocellular carcinoma cell lines (HuH-7 and HEPG-2), and the expression of some apoptotic genes was explored. In addition, the chemical composition of a potent extract of L. sativum was analyzed using gas chromatography coupled with mass spectrometry. Then, molecular docking analysis was implemented to identify the potential targets of the L. sativum components’ most potent extract. Overall, the n-hexane extract was the most potent against the two HCC cell lines. Moreover, these cytotoxicity levels were supported by the significant downregulation of EGFR and BCL2 gene expression levels and the upregulation of SMAD3, BAX, and P53 expression levels in both HuH-7 and HEPG2 cell lines. Regarding L. sativum’s chemical composition, GC–MS analysis of the n-hexane extract led to the identification of thirty compounds, including, mainly, hydrocarbons and terpenoids, as well as other volatile compounds. Furthermore, the binding affinities and interactions of the n-hexane fraction’s major metabolites were predicted against EGFR and BCL2 molecular targets using the molecular docking technique. These findings reveal the potential use of L. Sativum in the management of HCC.
Collapse
Affiliation(s)
- Shaimaa Nazir
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.N.); (N.T.A.-G.)
| | - Ahmed A. El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.N.); (N.T.A.-G.)
- Correspondence: (A.A.E.-S.); (M.-E.F.H.); (M.A.M.A.); Tel.: +20-10-6016-0168 (A.A.E.-S.); +20-33-371-635 (M.-E.F.H.); +20-10-0016-4922 (M.A.M.A.)
| | - Nour T. Abdel-Ghani
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.N.); (N.T.A.-G.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, Giza 12622, Egypt
- Correspondence: (A.A.E.-S.); (M.-E.F.H.); (M.A.M.A.); Tel.: +20-10-6016-0168 (A.A.E.-S.); +20-33-371-635 (M.-E.F.H.); +20-10-0016-4922 (M.A.M.A.)
| | - Mohamed A. M. Atia
- Molecular Genetic and Genome Mapping Laboratory, Genome Mapping Department, Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre (ARC), Giza 12619, Egypt
- Correspondence: (A.A.E.-S.); (M.-E.F.H.); (M.A.M.A.); Tel.: +20-10-6016-0168 (A.A.E.-S.); +20-33-371-635 (M.-E.F.H.); +20-10-0016-4922 (M.A.M.A.)
| |
Collapse
|
19
|
Eto H, Naganuma T, Nakao M, Murata M, Elhelaly AE, Noda Y, Kato H, Matsuo M, Akahoshi T, Hashizume M, Hyodo F. Development of 20 cm sample bore size dynamic nuclear polarization (DNP)-MRI at 16 mT and redox metabolic imaging of acute hepatitis rat model. Free Radic Biol Med 2021; 169:149-157. [PMID: 33865961 DOI: 10.1016/j.freeradbiomed.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023]
Abstract
Tissue redox metabolism is involved in various diseases, and an understanding of the spatio-temporal dynamics of tissue redox metabolism could be useful for diagnosis of progression and treatment. In in vivo dynamic nuclear polarization (DNP)-MRI, electron paramagnetic resonance (EPR) irradiation at the resonance frequency of nitroxyl radicals administered as a redox probe for induction of DNP, increases the intensity of MRI signals. For electron spin, it is necessary to apply a resonant frequency 658 times higher than that required for nuclear spin because of the higher magnetic moment of unpaired electrons. Previous studies using a disease model of small animals and in vivo DNP-MRI have revealed that an abnormal redox status is involved in many diseases, and that it could be used to visualize the dynamics of alterations in redox metabolism. To use the current methods in clinical practice, the development of a prototype DNP-MRI system for preclinical examinations of large animals is indispensable for clarifying the problems peculiar to the increase in size of the DNP-MRI device. Therefore, we developed a in vivo DNP-MRI system with a sample bore size of 20 cm and a 16-mT magnetic field using a U-shaped permanent magnet. Because the NMR frequency is very low, we adopted a digital radiofrequency transmission/reception system with excellent filter and dynamic range characteristics and equipped with a digital eddy current compensation system to suppress large eddy currents. The pulse sequence was based on the fast spin-echo sequence, which was improved for low frequency and large-eddy current equipment. The in vivo DNP-MRI system developed was used to non-invasively image the redox reaction of a carbamoyl-PROXYL probe in the livers of large rats weighing 800 g. Furthermore, DNP-MRI analysis was able to capture significant changes in redox metabolism in hepatitis-model rats.
Collapse
Affiliation(s)
- Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatuya Naganuma
- Japan Redox limited, 4-29-49-805 Chiyo Hakata-ku, Fukuoka, Japan
| | - Motonao Nakao
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Advanced Medical Medicine, Disaster and Emergency Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yoshifumi Noda
- Department of Radiology, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan; Department of Radiology, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomohiko Akahoshi
- Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Advanced Medical Medicine, Disaster and Emergency Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | | | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
20
|
Doghmane A, Aouacheri O, Laouaichia R, Saka S. The investigation of the efficacy ratio of cress seeds supplementation to moderate hyperglycemia and hepatotoxicity in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2021; 20:447-459. [PMID: 34178850 PMCID: PMC8212251 DOI: 10.1007/s40200-021-00764-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Oxidative stress resulting from chronic hyperglycemia induced many complications in diabetes and led to disorders and dysfunctions in different organs. This study aimed to evaluate the hepatoprotective rate of cress seeds (CS) or Lepidium sativum seeds in the diet on lowering hyperglycemia and oxidative stress damaging. METHODS Diabetes was induced by a single intraperitoneal injection of 60 mg/kg of streptozotocin (STZ). Forty-eight male rats were randomly divided into six groups : (D-0) and (ND-0) diabetic, and non-diabetic groups were fed with a normal diet, (ND-CS2) and (ND-CS5) non-diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively, (D-CS2) and (D-CS5) diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively. After 28 days of treatment, biochemical, histological, and oxidative parameters were determined. Hepatic and pancreatic histological sections were developed. RESULTS STZ-injection caused hyperglycemia accompanied by a disturbance in biochemical parameters and intensified oxidative stress status compared to the (ND-0) group. Hepatic and pancreatic histological sections of diabetic rats showed a disrupted architecture. However, the cress seeds-diet revealed a significant decrease of hyperglycemia and a reduction of the intensity of oxidative stress induced by diabetes compared to the (D-0) group, remarked by a decreased level of Malondialdehyde (MDA) and high levels of glutathione (GSH) and the antioxidant enzymes, led to the decrease of the majority of parameters principally hepatic and lipid profile with histological regeneration. CONCLUSIONS Cress seeds supplementation confirmed their potential anti-diabetic and antioxidant activities with higher efficacy of 5 % dose than the lower dose of 2 %. Therefore, 5 % of cress seeds administration seems to be the excellent rate recommended in controlling diabetes and its complications.
Collapse
Affiliation(s)
- Amina Doghmane
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
| | - Ouassila Aouacheri
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
- Laboratory of Animal Ecophysiology, Department of Biology, University of Badji Mokhtar, Annaba, Algeria
| | - Rania Laouaichia
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
| | - Saad Saka
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, University of Badji Mokhtar, Annaba, Algeria
- Laboratory of Animal Ecophysiology, Department of Biology, University of Badji Mokhtar, Annaba, Algeria
| |
Collapse
|
21
|
Bomgning CLK, Sinda PVK, Ponou BK, Fotio AL, Tsague MK, Tsafack BT, Kühlborn J, Mbuyo-Nguelefack EP, Teponno RB, Opatz T, Tapondjou LA, Nguelefack TB. Hepatoprotective effects of extracts, fractions and compounds from the stem bark of Pentaclethra macrophylla Benth: Evidence from in vitro and in vivo studies. Biomed Pharmacother 2021; 136:111242. [PMID: 33486213 DOI: 10.1016/j.biopha.2021.111242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
AIM To identify the bioactive hepatoprotective components of the ethanol extract of Pentaclethra macrophylla stem bark using in vitro and in vivo approaches. METHODS The bioguided-fractionation of the ethanol extract was based on the substances' capacity to prevent in vitro, the lipid peroxidation of hepatocytes' membranes induced by hydrogen peroxide. For the in vivo hepatoprotective test, mice were treated orally with the ethyl acetate (EtOAc) fraction of the ethanol extract at doses of 50 and 75 mg/kg/day for one week and subjected to d-galactosamine/lipopolysaccharide (GaIN/LPS)-induced hepatotoxicity. Blood samples were collected for alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), TNF-α and IL-1β assays. The liver was harvested for histological and biochemical (proteins, glutathione (GSH), catalase and superoxide dismutase (SOD)) analysis. RESULTS The ethanol extract and fractions induced concentration-dependent inhibition of lipid peroxidation (IC50: 3.21-48.90 μg/mL) greater than that of silymarin (IC50: 117.4 μg/mL). The purification of the sub-fractions of EtOAc fraction yielded: (7R)-7-hydroxyhexacosanoic acid (1), (7R)-1-(7-hydroxyhexacosanoyl) glycerol (2), bergenin (3), 11-O-galloylbergenin (4), 2-hydroxymethyl-5-(2-hydroxypropan-2-yl)phenol (5), β-sitosterol 3-O-β-d-glucopyranosyl (6) and β-sitosterol (7)), among which 11-O-galloylbergenin (IC50:1.8 μg/mL) was the most effective. The EtOAc fraction significantly reduced the serum level of ALAT, ASAT and TNF-α in vivo. This EtOAc fraction increased the liver protein content and protected the liver against structural damages, but did not boost the endogenous antioxidant parameters. CONCLUSION The stem bark of Pentaclethra macrophylla possesses hepatoprotective effects that may result from its capacity to inhibit lipid peroxidation and could be attributed to its active components 3, 4 and 2.
Collapse
Affiliation(s)
- Cyrille Lionel Kamga Bomgning
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Pierre Valery Kemdoum Sinda
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Beaudelaire Kemvoufo Ponou
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Agathe Lambou Fotio
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Mathias Kenfack Tsague
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Borice Tapondjou Tsafack
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Jonas Kühlborn
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany.
| | - Elvine Pami Mbuyo-Nguelefack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Rémy Bertrand Teponno
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Till Opatz
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128, Mainz, Germany.
| | - Léon Azefack Tapondjou
- Research Unit of Environmental and Applied Chemistry, Faculty of Science, University of Dschang, Box 67, Dschang, Cameroon.
| | - Télesphore Benoit Nguelefack
- Research Unit of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| |
Collapse
|
22
|
Ibrahim EH, Ghramh HA, Alshehri A, Kilany M, Khalofah A, El-Mekkawy HI, Sayed MA, Alothaid H, Taha R. Lepidium sativum and Its Biogenic Silver Nanoparticles Activate Immune Cells and Induce Apoptosis and Cell Cycle Arrest in HT-29 Colon Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is an increased demand for plants with antioxidants and anticancer properties. Lepidium sativum L. is an edible plant with medical importance. In this study, we aimed to investigate the anticancer activity; antioxidant capacity and antibacterial impact of Lepidium sativum
L. seed acetone extract (LSSAExt), alone and with its biogenic silver nanoparticles (AgNPs). LSSAExt-produced AgNPs were characterized using SEM, XRD and Vis/UV analysis. Biomolecules in LSSAExt and LSSAExt + AgNPs were explored utilizing FTIR. The ability of LSSAExt and LSSAExt + AgNPs to
induce apoptosis and mitotic cell arrest in the HT-29 colon cancer cells, compared to normal and repeated cell division activated splenic cells was determined by florescent stains and flow cytometry. Antibacterial power was tested using well diffusion technique. LSSAExt and LSSAExt + AgNPs
showed a good antibacterial impact. LSSAExt contains ROS, which could help in cancer cells apoptosis. LSSAExt and LSSAExt+AgNPs were not toxic to splenic cells and increased the rate of their cell division. LSSAExt and LSSAExt+AgNPs increased p53 expression and could arrest cell division of
HT-29 colon cancer cells but not of normal fast dividing cells. LSSAExt and LSSAExt+AgNPs caused apoptosis in cancer cells rather than necrosis. In conclusion, acetone preparation of the edible plant L. sativum is a good antibacterial agent, good anticancer preparation at least against
colon cancer as it is shown to be targeted, effective and can boost immune cells.
Collapse
Affiliation(s)
- Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ali Alshehri
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mona Kilany
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Haitham I. El-Mekkawy
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mahmoud A. Sayed
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, 4781, Saudi Arabia
| | - Ramadan Taha
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
23
|
Ahmad A, Nabi R, Mishra A, Ahmad IZ. A Panoramic Review on Lepidium sativum L. Bioactives as Prospective Therapeutics. Drug Res (Stuttg) 2020; 71:233-242. [PMID: 33378774 DOI: 10.1055/a-1334-4101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Lepidium sativum (L. sativum), an annual herb belonging to family Brassicaceae is commonly known as Garden cress of Egyptian origin but now a day's cultivated worldwide. The plant material and its constituents are used in various traditional and folk medicines for the treatment of various liver diseases and other ailments. OBJECTIVE This review aims to gather comprehensive information on L. sativum's bioactive constituents, and it's antioxidant, hepato-protective and anticancer activity. METHOD Systematic exploration for research evidences were carried out using well-structured and focused review question and presented data in the tabular form for readers' convenience. RESULTS The comprehensive literature survey was conducted, and we found that specific studies on L. Sativum and its bioactive compounds had been carried out to date. We explored the unique and selective effect of L. Sativum and its bioactive constituents to combat oxidative stress and hepatic carcinoma. CONCLUSION The present article appraised that L. sativum extract has a potential therapeutic effect against liver toxicity and hepato-carcinoma. Graphical Abstract.
Collapse
Affiliation(s)
- Asad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Rabia Nabi
- Department of Bioscience, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Iffat Zareen Ahmad
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh, India
| |
Collapse
|
24
|
The Great Healing Potential Hidden in Plant Preparations of Antioxidant Properties: A Return to Nature? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8163868. [PMID: 33101592 PMCID: PMC7569450 DOI: 10.1155/2020/8163868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
The application of chemicals in industry and agriculture has contributed to environmental pollution and exposure of living organisms to harmful factors. The development of new pharmaceutical agents enabled successful therapy of various diseases, but their administration may be connected with side effects. Oxidative stress has been found to be involved into etiology of numerous diseases as well as harmful action of drugs and chemicals. For some time, plant origin substances have been studied as potential protective agents alleviating toxicity of various substances and symptoms of diseases. The aim of the current review was to present the diversity of the research performed during the last five years on animal models. The outcomes showed a huge protective potential inherent in plant preparations, including alleviating prooxidative processes, strengthening antioxidant defence, ameliorating immune parameters, and reversing histopathological changes. In many cases, plant origin substances were proved to be comparable or even better than standard drugs. Such findings let us suggest that in the future the plant preparations could make adjuvants or a replacement for pharmaceutical agents. However, the detailed research regarding dose and way of administration as well as the per se effects needs to be performed. In many studies, the last issue was not studied, and in some cases, the deleterious effects have been observed.
Collapse
|
25
|
Ahmed N, El-Agamy DS, Mohammed GA, Abo-Haded H, Elkablawy M, Ibrahim SRM. Suppression of LPS-Induced Hepato- and Cardiotoxic Effects by Pulicaria petiolaris via NF-κB Dependent Mechanism. Cardiovasc Toxicol 2020; 20:121-129. [PMID: 31273688 DOI: 10.1007/s12012-019-09539-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, there is an increasing interest in searching for harmless natural products isolated from plant materials that can be used as beneficial dietary supplements and/or therapeutic drug candidates. The present study aimed to test the potential protective role of Pulicaria petiolaris (PP, Asteraceae) against hepatic and cardiotoxic effects associated with lipopolysaccharide (LPS) injection. PP was given orally for 5 days at two different doses before LPS injection. Results have shown that LPS induced remarkable hepatic and cardiac injurious effects in mice. Hepatic damage was evident through increased serum transaminases, lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and activity. Estimation of high levels of serum creatine kinase-MB (CK-MB) and cardiac troponin I indicated cardiac damage. Histopathological examination of liver and heart confirmed the biochemical results. Increase in oxidative stress along with a depressed antioxidant status of liver and heart were observed in LPS-intoxicated animals. Furthermore, LPS induced activation of nuclear factor-κB (NF-κB) and subsequent elevation of inflammatory cytokines (TNF-α, IL-6). On the other hand, PP treatment successfully safeguards both organs against LPS-induced injury as indicated by the improvement of the biochemical and histopathological parameters. These results suggest that PP ameliorates LPS-induced hepatic and cardiac oxidative injurious effects via antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Nishat Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia
| | - Dina Saad El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Gamal Abdallah Mohammed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hany Abo-Haded
- Cardiology Unit, College of Medicine, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia
| | - Mohamed Elkablawy
- Department of Pathology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, 30001, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Sabrin Ragab Mohamed Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah, 30078, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
26
|
Rousta AM, Mirahmadi SMS, Shahmohammadi A, Ramzi S, Baluchnejadmojarad T, Roghani M. S-allyl cysteine, an active ingredient of garlic, attenuates acute liver dysfunction induced by lipopolysaccharide/ d-galactosamine in mouse: Underlying mechanisms. J Biochem Mol Toxicol 2020; 34:e22518. [PMID: 32453893 DOI: 10.1002/jbt.22518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
In the present study, beneficial effect of S-allyl cysteine (SAC) was evaluated in the lipopolysaccharide/d-galactosamine (LPS/d-Gal) model of acute liver injury (ALI). To mimic ALI, LPS and d-Gal (50 μg/kg and 400 mg/kg, respectively) were intraperitoneally administered and animals received SAC per os (25 or 100 mg/kg/d) for 3 days till 1 hour before LPS/d-Gal injection. Pretreatment of LPS/d-Gal group with SAC-lowered activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase and partially reversed inappropriate alterations of hepatic oxidative stress- and inflammation-related biomarkers including liver reactive oxygen species, malondialdehyde, and hepatic activity of the defensive enzyme superoxide dismutase, ferric reducing antioxidant power (FRAP), toll-like receptor-4 (TLR4), cyclooxygenase 2, NLR family pyrin domain containing 3 (NLRP3), caspase 1, nuclear factor κB (NF-κB), interleukin 1β (IL-1β), IL-6, tumor necrosis factor-α, and myeloperoxidase activity. Additionally, SAC was capable to ameliorate apoptotic biomarkers including caspase 3 and DNA fragmentation. In summary, SAC can protect liver against LPS/d-Gal by attenuation of neutrophil infiltration, oxidative stress, inflammation, apoptosis, and pyroptosis which is partly linked to its suppression of TLR4/NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
| | | | | | - Samira Ramzi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
27
|
Farghaly DS, Sadek ASM. Trypanocidal activity of methanol extracts of the hemolymph of Sarcophaga argyrostoma larva against Trypanosoma evansi infected mice. Vet World 2020; 13:1599-1604. [PMID: 33061233 PMCID: PMC7522962 DOI: 10.14202/vetworld.2020.1599-1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Many natural products worldwide are used for medicinal purposes. Various insect-isolated compounds were investigated in pursuit of new therapeutic agents. This study aimed to compare the effects of methanol extract of hemolymph of Sarcophaga argyrostoma larvae with diminazene aceturate on some hematological and biochemical indices of mice infected with Trypanosoma evansi. MATERIALS AND METHODS Sixteen albino mice were randomly divided into four groups, of four mice, which received different treatments: In Group 1 (G1), mice were infected intraperitoneally with 1×104 T. evansi and received no treatment (positive control), in Group 2 (G2), infected mice were treated with 0.5 mL/kg of diminazene aceturate, in Group 3 (G3), infected mice were treated with 0.5 mL/kg methanol extract of the hemolymph of S. argyrostoma larvae, and in Group 4 (G4), uninfected mice received 0.5 ml of distilled water (negative control). In G3, treatment was started 3 days before injecting the parasite, while for the other groups, a single dose of treatment was applied when the parasite appeared in the blood. RESULTS Mice from G3 showed low parasitemia of 29×104/mm3 4 days post-infection until the infection completely disappeared on the 5th day, which was earlier than for other groups. The results showed that the numbers of red blood corpuscles (red blood cells [RBCs]) and white blood cells (WBCs) per unit volume were significantly different (p<0.05) between the four groups. The highest RBC (9.09×103 cell/ mm3) and WBC (14.30×103 cell/ mm3) counts were recorded in G3, whereas the lowest values of 6.60 and 4.60×103cell/ mm3, respectively, were recorded for G2. In addition, there were significant differences (p<0.05) between the different groups for platelet counts per unit volume, with G3 having the most (943×103 cell/ mm3) and G2 having the least (357×103 cell/ mm3). There was a significant (p<0.05) difference in the indices of biochemical activities between the extract-treated infected groups and the standard drug-treated group. CONCLUSION This study suggests that the methanol extract of the hemolymph of S. argyrostoma larva exhibits trypanocidal activity, so it may be exploited as a suitable candidate for the development of trypanocidal drugs.
Collapse
Affiliation(s)
- Doaa S. Farghaly
- Department of Zoology and Entomology, College of Science, Al-Azhar University, P. O. 11765, Cairo 11865, Egypt
| | - Al-Shaimaa M. Sadek
- Department of Zoology and Entomology, College of Science, Al-Azhar University, P. O. 11765, Cairo 11865, Egypt
| |
Collapse
|
28
|
Sigamani S, Chinnasamy R, Dharmaraj RK, Ramamurthy D, Devarajan N, Narayanasamy M, Natarajan H. Larvicidal potency of the extracts from Chlorella sp. against Aedes aegypti. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ebrahimabadi MH, Lamardi SNS, Shirbeigi L. Immunomodulatory Effects of Medicinal Plants used for Vitiligo in Traditional Persian Medicine. Curr Drug Discov Technol 2020; 18:160-178. [PMID: 32416680 DOI: 10.2174/1570163817666200517115438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitiligo is a hypopigmentation disorder that affects 1% of the world's population. Vitiligo causes white spots on the skin, mucous membranes, or white hair by destroying skin melanocytes. The pathogenesis of vitiligo is unknown but autoimmune, autocytotoxic, and neural mechanisms are suggested. According to the autoimmune theory, in people with vitiligo, immune cells invade and damage melanocytes. T cells are more commonly present in vitiligo patients' skin and remain in the lesion site, which is composed of CD8 and CD4 T cells. Many studies have been conducted on the presence and role of cytokines such as interleukins and interferongamma (IFN-γ) in the vitiligo process. AIM This study aimed to introduce herbs effective against vitiligo from the perspective of Persian medicine and to investigate their possible therapeutic mechanisms with the possible effects of herbs on autoimmune mechanisms. METHODS For this purpose, keywords were used to extract data from Persian medicine textbooks, and then relevant scientific databases, including Google Scholar, PubMed, Web of Science, and Scopus were examined. RESULTS It was found that Persian medicine scholars used 50 different medicinal plants to treat and reduce the complications of vitiligo, and recent scientific studies have proven immune-regulating properties and reducing the effect of many of them on cytokines. CONCLUSION According to scientific evidence on immunomodulatory effects, new research into the effects of these plants on vitiligo can lead to the discovery of new drugs and approaches for treating this disease.
Collapse
Affiliation(s)
- Mohsen Haghir Ebrahimabadi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Laila Shirbeigi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Elucidation of the Molecular Mechanisms Underlying Sorafenib-Induced Hepatotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7453406. [PMID: 32509153 PMCID: PMC7245685 DOI: 10.1155/2020/7453406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Sorafenib is a small, orally-active multikinase inhibitor that is most frequently used for the management of renal cell carcinoma, hepatocellular carcinoma, and radioactive iodine-resistant thyroid carcinoma. However, recent reports have associated sorafenib with hepatotoxicity that can limit its clinical application, although the mechanism of hepatotoxicity is still to be elucidated. Thus, our study was designed to explore the molecular mechanisms underlying sorafenib-induced hepatotoxicity in an in vivo model. Twenty male adult Wistar rats were randomly placed into two groups; the first group received an oral dose of normal saline (vehicle), and the second received sorafenib (30 mg/kg) once daily for twenty-one consecutive days. After twenty-one days, liver tissues and blood samples were used for gene expression, protein expression, and biochemical analysis. Sorafenib treatment resulted in markedly increased levels of alanine aminotransferase and alkaline phosphatase, which indicate the presence of liver damage. Additionally, sorafenib administration induced the inflammatory and oxidative stress marker NF-κB-p65, while antioxidant enzymes were attenuated. Moreover, sorafenib caused upregulation of both gene and protein for the apoptotic markers cleaved Caspase-3, Bax, and Bid, and downregulation of the antiapoptotic protein Bcl-2. In conclusion, our findings suggest that sorafenib administration is associated with hepatotoxicity, which might be due to the activation of oxidative stress and apoptotic pathways.
Collapse
|
31
|
Mondal M, Hossain MM, Hasan MR, Tarun MTI, Islam MAF, Choudhuri MSK, Islam MT, Mubarak MS. Hepatoprotective and Antioxidant Capacity of Mallotus repandus Ethyl Acetate Stem Extract against d-Galactosamine-Induced Hepatotoxicity in Rats. ACS OMEGA 2020; 5:6523-6531. [PMID: 32258888 PMCID: PMC7114618 DOI: 10.1021/acsomega.9b04189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/05/2020] [Indexed: 05/02/2023]
Abstract
Mallotus repandus (M. repandus) is traditionally used to treat muscle pain, itching, fever, rheumatic arthritis, and a variety of liver disorders. The aim of the present work was to evaluate the hepatoprotective activity and the antioxidant potential of the ethyl acetate stem extract of M. repandus (ESMR) against d-galactosamine (d-GalN)-induced hepatopathy, along with a possible mechanism of action in rats. In vivo hepatoprotective activity of ESMR was examined using d-galactosamine (d-GalN)-induced hepatotoxicity in Sprague-Dawley rats. For this purpose, levels of serum diagnostic markers, activity of hepatic antioxidant enzymes, and liver histo-architecture were employed to assess the protective efficacy of ESMR. Furthermore, the total phenolic, flavonoid, and tannin contents were quantitated, and the antioxidant capacity of the extract was evaluated using different methods such as 2,2'-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), hydrogen peroxide (H2O2), and hydroxyl radical (OH•) scavenging assays. Intraperitoneal d-GalN injection triggered hepatotoxicity, as shown by the noticeable increase in the serum hepatic marker enzymes, bilirubin content, γ-glutamyl transferase (GGT), total cholesterol (TC), triglycerides (TGs), and malondialdehyde (MDA), whereas glutathione, superoxide dismutase, and catalase levels were significantly lower compared with that of the control. Pretreatment with ESMR reduced the hepatic enzyme levels along with bilirubin, GGT, and MDA compared to the d-GalN-intoxicated group. These results were supported by histopathological studies, where d-galactosamine caused coagulative necrosis, hemorrhage, and inflammation. However, pretreatment with ESMR ameliorated the histo-architectural changes and brought them back to normal. Results also revealed that the total polyphenolic, flavonoid, and tannin content, and total antioxidant capacity of ESMR were 136.30 ± 0.78 mg GAE/g mg, 38.72 ± 0.85 mg QE/g, 75.88 ± 0.54 mg TAE/g, and 123.16 ± 0.24 mg AAE/g, respectively. In addition, ESMR inhibited free radicals with IC50 values of 94.47 ± 0.51, 127.33 ± 0.36, 164.12 ± 0.45, and 254.14 ± 0.35 μg/mL in DPPH, NO, H2O2, and OH• free radical scavenging assays, respectively. These findings highlight the protective role of ESMR against hepatic injury induced by d-GalN, which may be attributed to its higher antioxidant properties, thereby scientifically justifying its traditional use.
Collapse
Affiliation(s)
- Milon Mondal
- Department
of Pharmacy, Bangabandhu Sheikh Mujibur
Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Department
of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Monir Hossain
- Department
of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Department
of Pharmacy, Mawlana Bhashani Science and
Technology University, Tangail 1902, Bangladesh
| | - Md. Rakib Hasan
- Department
of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Md. Al Foyjul Islam
- Department
of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - M. S. K. Choudhuri
- Department
of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Muhammad Torequl Islam
- Laboratory
of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | | |
Collapse
|
32
|
Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food Chem 2019; 289:16-25. [DOI: 10.1016/j.foodchem.2019.03.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 11/24/2022]
|
33
|
Balgoon MJ. Assessment of the Protective Effect of Lepidium sativum against Aluminum-Induced Liver and Kidney Effects in Albino Rat. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4516730. [PMID: 31396529 PMCID: PMC6668553 DOI: 10.1155/2019/4516730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Environmental pollution with the different Aluminum (Al) containing compounds has been increased. Liver and kidney are two vital organs targeted by Al accumulation. The aim of this study was to assess the possible protective and curative effects of Lepidium sativum Linn (LS) against Al-induced impairment of liver and kidney in albino rat and to explore the mechanism behind this effect. MATERIALS AND METHODS This experimental animal-based study included fifty albino rats divided into five groups, the control, LS-treated (20 mg/kg), AlCl3-treated (10 mg/kg), AlCl3 then LS, and AlCl3 plus LS-treated, simultaneously for 8 weeks. At the end of the experiment, hepatic and renal functions as well as the biomarkers of antioxidants activities were assessed in the serum. Both liver and kidney were dissected out and histopathologically examined. RESULTS This study showed that administration of AlCl3 caused a significant (p<0.05) reduction in rats body weight. It significantly increased serum AST, ALT, ALP, bilirubin, urea, and creatinine levels and decreased total protein and albumin. AlCl3 significantly reduced enzymatic (catalase), nonenzymatic (reduced glutathione), and ferric reducing antioxidant power (FRAP) in the serum. Histopathologically, it induced necrosis and degeneration of hepatocytes, glomeruli, and renal tubules. Administration of LS after or along with AlCl3 significantly restored the serum biomarkers of liver and kidney functions to their near-normal levels and had the ability to overcome Al-induced oxidative stress and preserved, to some extent, the normal hepatic and renal structure. The coadministration of LS had a superior effect in alleviating Al-induced changes. CONCLUSION Exposure to AlCl3 induced a set of functional and structural changes in the liver and kidney of rats evident through both biochemical and histopathological assessment. The antioxidant activity of LS seeds mediated a protective and curative effect of LS against such changes. Further study through a rigorous clinical trial to prove LS activity on human is recommended.
Collapse
Affiliation(s)
- Maha Jameal Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
34
|
Amelioration of CCl 4-Induced Hepatotoxicity in Rabbits by Lepidium sativum Seeds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5947234. [PMID: 30984276 PMCID: PMC6431501 DOI: 10.1155/2019/5947234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/30/2019] [Indexed: 01/22/2023]
Abstract
The current study aimed to evaluate the probable protective effect of Lepidium sativum seeds (LSS) against CCl4 induced hepatic injury in New-Zealand rabbits. Rabbits were randomly divided into two main groups; group-A (noninjured group, n=15) was divided to subgroups A1 (untreated control) and A2 and A3 which received 200 & 400 mg/kg bw of LSS, respectively, in their diet daily. Group-B (injured group, n=30) were subcutaneously injected with CCl4 (0.5 ml/kg bw) starting from day one of the experiment and were equally divided into 3 subgroups: B1 received normal standard diet and B2 & B3 received 200 & 400 mg/kg bw of LSS, respectively, in their diet daily. Five rabbits of all subgroups were decapitated 5 and 10 weeks after experimental running. Biochemical analysis revealed significant decrease in serum levels of transaminases, γ-GT, ALP, total bilirubin, cholesterol, triglycerides associated with significant increase in the serum levels of T protein and albumin of 200 and 400 mg/kg bw of LSS protected rabbits for 5 and 10 weeks as compared with CCl4 treated rabbits. Oxidative stress and depressed antioxidant system of the liver tissues were markedly obvious in the CCl4 treated group. LSS administration reversed these results towards normalization. Histopathological examination of LSS protected rabbits (200 mg/kg bw of LSS for 10 weeks) showed improvement of the histoarchitectural changes of the liver induced by CCl4 to the normal aspect, showing regenerating hepatocytes with no steatosis, discrete chronic venous congestion, and discrete inflammatory infiltrate. The current findings provide new evidence that LSS could reverse the hepatotoxic effects of CCl4 and repair the liver functions.
Collapse
|
35
|
Zou C, Tan X, Ye H, Sun Z, Chen S, Liu Q, Xu M, Ye C, Wang A. The hepatoprotective effects of Radix Bupleuri extracts against D-galactosamine/lipopolysaccharide induced liver injury in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2018; 83:8-17. [PMID: 30145200 DOI: 10.1016/j.fsi.2018.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
The present study is aiming at evaluating the hepatoprotective of Radix Bupleuri extracts (RBE) on the d-galactosamine/lipopolysaccharide (D-GalN/LPS) induced liver injury of hybrid grouper in vitro and in vivo. In vitro, RBE (0, 200, 400 and 800 μg/ml) was added to the hybrid grouper primary hepatocytes before (pretreatment) the incubation of the hepatocytes with D-GalN (20 mM) plus LPS (1 μg/ml) in the culture medium. RBE at concentrations of 200, 400 and 800 μg/ml significantly improved cell viability and inhibited the elevation of TNF-α, IL-1β and IL-6 and significantly down-regulated the caspase-3, caspase-9 and P53 mRNA levels. In vivo administration of RBE at the doses of 0, 200, 400, 800 and 1600 mg/kg in the diet for 8 weeks prior to D-GalN (500 mg/kg) and LPS (20 μg/kg) intoxication. The study indicated that the RBE not only ameliorated liver injury, as evidenced by well-preserved liver architecture, but also significantly increased hepatic antioxidant enzymes activities in the D-GalN/LPS-induced liver injury animal model. Further demonstrating the protective effects of the RBE, we found that pretreatment with the RBE up-regulated the expression of antioxidant genes (GPx and MnSOD), while down-regulated apoptosis-related genes (caspase-3, caspase-9 and P53), immune related genes (MHC2 and TLR3) and pro-inflammatory cytokines (TOR and IKKα) mRNA expression in the liver of hybrid grouper. In brief, the present study showed that RBE can protect hepatocyte injury induced by D-GalN/LPS through elevating antioxidant enzyme activity and suppressing apoptosis and immune inflammatory responses. The results support the use of RBE as a hepatoprotective in fish.
Collapse
Affiliation(s)
- Cuiyun Zou
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaohong Tan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Huaqun Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zhenzhu Sun
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Shu Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qingying Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Minglei Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chaoxia Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Anli Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
36
|
Al-Otaibi MSA, Al-Quraishy S, Al-Malki ES, Abdel-Baki AAS. Therapeutic potential of the methanolic extract of Lepidium sativum seeds on mice infected with Trypanosoma evansi. Saudi J Biol Sci 2018; 26:1473-1477. [PMID: 31762612 PMCID: PMC6864210 DOI: 10.1016/j.sjbs.2018.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to investigate the therapeutic potential of the methanolic extract of Lepidium sativum seeds in mice experimentally infected with Trypanosoma evansi. A total of thirty-two male Swiss albino mice were randomly divided into four groups: the first group was the normal control, while the second, third and fourth groups were infected intraperitoneally with 1 × 104 trypanosomes. The third and fourth groups were treated with 100 μl of Lepidium sativum seed extract (LSSE) at a dose of 200 mg/kg body weight intraperitoneally (infected + LSSEI) and orally (infected + LSSEO) respectively, once a day, for a period of four days. Parasitaemia was found to be significantly raised in the untreated infected group, reaching 2 × 107 at day 4 post-infection, but was significantly reduced by 65.5% and 88% in the mice treated orally and intraperitoneally with LSSE, respectively. The erythrocyte count, HCT, haemoglobin content, leucocyte count and the percentage of lymphocytes was significantly reduced in the untreated infected group, while the treatment with LSSE returned these parameters to their pre-infection values. In addition, our study proved that LSSE provided protection against liver tissue damage and decreased the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The present study also established that intraperitoneal injection of LSSE is more effective than oral administration in the treatment of trypanosome infection in mice. In conclusion, the infection caused haematological, biochemical and histological changes that were ameliorated following treatment with LSSE.
Collapse
Affiliation(s)
- Mamdooh S A Al-Otaibi
- Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Esam S Al-Malki
- Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Saudi Arabia
| | | |
Collapse
|
37
|
Wang W, Zhang Y, Li H, Zhao Y, Cai E, Zhu H, Li P, Liu J. Protective Effects of Sesquiterpenoids from the Root of Panax ginseng on Fulminant Liver Injury Induced by Lipopolysaccharide/d-Galactosamine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7758-7763. [PMID: 29974747 DOI: 10.1021/acs.jafc.8b02627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is reported that sesquiterpenoids from Panax ginseng (SPG) possess various pharmacological activities, for example, antidepressant, antioxidative, and anti-inflammatory activities. The purpose of this study was to examine the hepatoprotective effects of SPG (2.5 and 10 mg/kg, i.g.) on fulminant liver injury induced by d-galactosamine (d-GalN) and lipopolysaccharide (LPS) and discuss its mechanisms of action. After 24 h of d-GalN (400 mg/kg, i.p.) and LPS (25 μg/kg, i.p.) exposure, the serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), hepatic malondialdehyde (MDA) level, hepatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), and hepatic tissue histology were measured. Expression levels of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Moreover, the nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuin type 1 (Sirt 1), and heme oxygenase 1 (HO-1) were determined by western blotting. The results indicated that SPG evidently restrained the increase of serum ALT and AST levels induced by d-GalN/LPS. SPG obviously downregulated TNF-α and IL-1β levels and their mRNA expression in liver. In addition, d-GalN/LPS injection induced severe oxidative stress in liver by boosting the MDA level as well as decreasing CAT, GSH, and SOD capacities, and SPG reversed these changes. Meanwhile, SPG inhibited NF-κB activation induced by d-GalN/LPS and upregulated Sirt 1, Nrf2, and HO-1 expression levels. Therefore, SPG might protect against the fulminant liver injury induced by d-GalN/LPS via inhibiting inflammation and oxidative stress. The protective effect of SPG on fulminant liver injury induced by d-GalN/LPS might be mediated by the Sirt 1/Nrf2/NF-κB signaling pathway. All of these results implied that SPG might be a promising food additive and therapeutic agent for fulminant liver injury.
Collapse
Affiliation(s)
- Weidong Wang
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Yanguo Zhang
- Department of Anesthesiology , Changchun Shuangyang District Hospital , Changchun , Jilin 130600 , People's Republic of China
| | - Haijun Li
- Jilin University , Changchun , Jilin 130021 , People's Republic of China
| | - Yan Zhao
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Enbo Cai
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials , Jilin Agricultural University , Changchun , Jilin 130118 , People's Republic of China
| | - Pingya Li
- Jilin University , Changchun , Jilin 130021 , People's Republic of China
| | - Jinping Liu
- Jilin University , Changchun , Jilin 130021 , People's Republic of China
| |
Collapse
|
38
|
Detoxication mechanisms of Radix Tripterygium wilfordii via compatibility with Herba Lysimachia christinae in S180-bearing mice by involving Nrf2. Biosci Rep 2018; 38:BSR20180429. [PMID: 29950302 PMCID: PMC6043720 DOI: 10.1042/bsr20180429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The combined administration between Radix Tripterygium wilfordii Hook F (LGT) and Herba Lysimachia christinae Hance (JQC) belongs to mutual detoxication compatibility of seven emotions in traditional Chinese medicine (TCM) theory. However, until now, the compatibility detoxication mechanisms remain unknown. The present study was undertaken to observe detoxication mechanisms of LGT through compatibility with JQC in tumor-bearing mice by involving NF-E2-related factor 2 (Nrf2)-mediated antioxidant defenses. In addition, influence of compatibility on antitumor activity was also investigated here. Our results demonstrated that compatibility with JQC administration significantly reversed LGT-elevated serum alanine/aspartate transaminase (ALT/AST) levels and alleviated hepatocytes’ swelling or degeneration damage, and at the ratio 2/1 (LGT/JQC) produced the strongest detoxication effect. Besides, compatibility with JQC administration reversed not only LGT-elevated hepatic malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) but also the LGT lowered GSH, glutathione-s transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and interleukin (IL)-10 levels. Furthermore, compatibility with JQC administration significantly up-regulated protein expression of Nrf2 and mRNA expression of it regulated downstream antioxidant genes such as heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1), and glutamate cysteine ligase catalytic subunit (GCLC). In addition, compatibility with JQC further decreased LGT-decreased tumor weight and at the ratio 2/1 (LGT/JQC) also exerted the strongest synergistic effect. Collectively, through compatibility with JQC exerted detoxication effect on LGT-induced hepatotoxicity and the mechanisms could be at least partly attributed to up-regulation of Nrf2 and its downstream signals, thereby enhancing antioxidant defenses, and inhibiting lipid peroxidation, oxidative stress, and inflammation. Additionally, at the ratio 2/1 (LGT/JQC) exerted the strongest effects on both detoxication and synergism.
Collapse
|
39
|
Alqahtani FY, Aleanizy FS, Mahmoud AZ, Farshori NN, Alfaraj R, Al-Sheddi ES, Alsarra IA. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi J Biol Sci 2018; 26:1089-1092. [PMID: 31303845 PMCID: PMC6600769 DOI: 10.1016/j.sjbs.2018.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 05/03/2018] [Indexed: 11/24/2022] Open
Abstract
Lepidium sativum (garden cress) seed oil was examined for its antimicrobial, antioxidant, and anti-inflammatory activities. The oil was obtained by hydrodistillation, where gas chromatography coupled with mass spectrometry that utilized to study its chemical composition. Microdilution method was used to test the antimicrobial effect of oil against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Klebsiella pneumoniae, and Candida albicans. The antioxidant activity was assessed by radical scavenging activity assay using 2,2-diphenyl-1-picrylhydrazyl radical. The major constituents found in the oil were 7,10-hexadecadienoic acid, 11-octadecenoic acid, 7,10,13-hexadecatrienoic acid, and behenic acid. The minimum inhibitory concentration (MIC) against all pathogens was 47.5 mg/ml, except for Salmonella enterica, which showed MIC of 90 mg/ml. The oil demonstrated antioxidant activity in a dose dependent pattern, with a half maximal inhibitory concentration (IC50) value of 40 mg/ml, and exerted anti-inflammatory activity, wherein 21% protection was shown at a concentration of 300 μg/ml. Thus, L. sativum seed oil shows antimicrobial, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Fulwah Yahya Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Amany Z Mahmoud
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.,Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nida Nayyar Farshori
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rihaf Alfaraj
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ebtesam Saad Al-Sheddi
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmaceutics, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Kalam MA, Raish M, Ahmed A, Alkharfy KM, Mohsin K, Alshamsan A, Al-Jenoobi FI, Al-Mohizea AM, Shakeel F. Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:319-329. [PMID: 28482534 DOI: 10.1016/j.msec.2017.03.088] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/05/2017] [Accepted: 03/12/2017] [Indexed: 01/22/2023]
Abstract
Thymoquinone (TQ) is a poorly water soluble bioactive compound which shows poor oral bioavailability upon oral administration. Due to poor aqueous solubility and bioavailability of TQ, various self-nanoemulsifying drug delivery systems (SNEDDS) of TQ were developed and evaluated for enhancement of its hepatoprotective effects and oral bioavailability. Hepatoprotective and pharmacokinetic studies of TQ suspension and TQ-SNEDDS were carried out in rat models. Different SNEDDS formulations of TQ were developed and thermodynamically stable TQ-SNEDDS were characterized for physicochemical parameters and evaluated for drug release studies via dialysis membrane. Optimized SNEDDS formulation of TQ was selected for further evaluation of in vivo evaluation. In vivo hepatoprotective investigations showed significant hepatoprotective effects for optimized TQ-SNEDDS in comparison with TQ suspension. The oral administration of optimized SNEDDS showed significant improvement in in vivo absorption of TQ in comparison with TQ suspension. The relatively bioavailability of TQ was enhanced 3.87-fold by optimized SNEDDS in comparison with TQ suspension. The results of this research work indicated the potential of SNEDDS in enhancing relative bioavailability and therapeutic effects of natural bioactive compounds such as TQ.
Collapse
Affiliation(s)
- Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Kazi Mohsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|