1
|
Zhao ZX, Zou QY, Ma YH, Morris-Natschke SL, Li XY, Shi LC, Ma GX, Xu XD, Yang MH, Zhao ZJ, Li YX, Xue J, Chen CH, Wu HF. Recent progress on triterpenoid derivatives and their anticancer potential. PHYTOCHEMISTRY 2025; 229:114257. [PMID: 39209239 DOI: 10.1016/j.phytochem.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Cancer poses a significant global public health challenge, with commonly used adjuvant or neoadjuvant chemotherapy often leading to adverse side effects and drug resistance. Therefore, advancing cancer treatment necessitates the ongoing development of novel anticancer agents with diverse structures and mechanisms of action. Natural products remain crucial in the process of drug discovery, serving as a primary source for pharmaceutical leads and therapeutic advancements. Triterpenoids are particularly compelling due to their complex structures and wide array of biological activities. Recent research has demonstrated that naturally occurring triterpenes and their derivatives have the potential to serve as promising candidates for new drug development. This review aims to comprehensively explore the anticancer properties of triterpenoids and their synthetic analogs, with a focus on recent advancements. Various aspects, such as synthesis, phytochemistry, and molecular simulation for structure-activity relationship analyses, are summarized. It is anticipated that triterpenoid derivatives will emerge as notable anticancer agents following further investigation into their mechanisms of action and in vivo studies.
Collapse
Affiliation(s)
- Zi-Xuan Zhao
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Qiong-Yu Zou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Ying-Hong Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiang-Yuan Li
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lin-Chun Shi
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guo-Xu Ma
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xu-Dong Xu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Mei-Hua Yang
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zi-Jian Zhao
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuan-Xiang Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China
| | - Jing Xue
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
| | - Chin-Ho Chen
- Antiviral Drug Discovery Laboratory, Surgical Oncology Research Facility, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hai-Feng Wu
- Beijing Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, Key Laboratory of Natural Products Research and Utilization in Wuling Mountain Area, Department of Chemistry & Chemical Engineering, Huaihua University, Huaihua, 418008, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Gartika M, Tumilaar SG, Dharsono HDA, Nurdin D, Kurnia D. Exploring the Inhibitory Potential of M. pendans Compounds Against N-Acetylglucosamine (Mur) Receptor: In Silico Insights Into Antibacterial Activity and Drug-Likeness. ScientificWorldJournal 2024; 2024:3569811. [PMID: 39654692 PMCID: PMC11628175 DOI: 10.1155/tswj/3569811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/27/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
Oral diseases are often caused by bacterial infections, making the inhibition of receptors like N-acetylglucosamine critical in preventing bacterial formation. The plant Myrmecodia pendans (M. pendans) is known for its diverse bioactivities and may serve as a promising source for developing new antibacterial agents. This study employs in silico methods to predict the inhibitory mechanisms, pharmacokinetics, and drug-likeness of compounds isolated from M. pendans. Three compounds were evaluated for their inhibitory effects on the MurA and MurB receptors using the AutoDock4 molecular docking software, with visualizations performed using the BIOVIA Discovery Studio Visualizer. The binding affinities obtained for compounds 1, 2, and 3 to the MurA receptor were -9.42, -9.57, and -6.84 kcal/mol, respectively, while their binding affinities to the MurB receptor were -11.25, -10.55, and -8.69 kcal/mol. These affinities were found to be stronger than those of fosfomycin (benchmark compound) but weaker than the native ligands of the respective receptors. Key amino acid residues involved in the binding to MurA were identified as Cys115 and Asp305, while Ser82 and Asn83 were noted for MurB. In the ADMET prediction and drug-likeness analysis, some compounds met the necessary criteria, whereas others did not. Although all the three compounds demonstrated strong predicted inhibitory activity against MurA and MurB receptors, the analysis suggests that Compound 2 may hold the most promise as a potential antibacterial agent, warranting further investigation.
Collapse
Affiliation(s)
- Meirina Gartika
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Sefren Geiner Tumilaar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Denny Nurdin
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Muthukumaran T, Kumar KA, Francis MS. Docking, Synthesis, and I n vitro Anti-depressant Activity of Certain Isatin Derivatives. Curr Comput Aided Drug Des 2024; 20:431-440. [PMID: 37231754 DOI: 10.2174/1573409919666230523114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND In vitro, the molecular docking method has been suggested for estimating the biological affinity of the pharmacophores with physiologically active compounds. It is the latter stage in molecular docking, and the docking scores are examined using the AutoDock 4.2 tool program. The chosen compounds can be evaluated for in vitro activity based on the binding scores, and the IC50 values can be computed. OBJECTIVE The purpose of this work was to create methyl isatin compounds as potential antidepressants, compute physicochemical characteristics, and carry out docking analysis. METHODS The protein data bank of the RCSB (Research Collaboratory for Structural Bioinformatics) was used to download the PDB structures of monoamine oxidase (PDB ID: 2BXR) and indoleamine 2,3-dioxygenase (PDB ID: 6E35). Based on the literature, methyl isatin derivatives were chosen as the lead chemicals. By determining their IC50 values, the chosen compounds were tested for in vitro anti-depressant activity. RESULTS The binding scores for the interactions of SDI 1 and SD 2 with indoleamine 2,3 dioxygenase were found to be -10.55 kcal/mol and -11.08 kcal/mol, respectively, while the scores for their interactions with monoamine oxidase were found to be -8.76 kcal/mol and -9.28 kcal/mol, respectively, using AutoDock 4.2. The relationship between biological affinity and pharmacophore electrical structure was examined using the docking technique. The chosen compounds were tested for their ability to inhibit MAO, and the IC50 values for each were found to be 51.20 and 56, respectively. CONCLUSION This investigation has identified many novel and effective MAO-A inhibitors from the family of chemicals known as methyl isatin derivatives. Lead optimization was applied to the SDI 1 and SDI 2 derivatives. The superior bioactivity, pharmacokinetic profile, BBB penetration, pre-ADMET profiles, such as HIA (human intestinal absorption) and MDCK (Madin-Darby canine kidney), plasma protein binding, toxicity assessment, and docking outcomes, have been obtained. According to the study, synthesised isatin 1 and SDI 2 derivatives exhibited a stronger MAO inhibitory activity and effective binding energy, which may help prevent stress-induced depression and other neurodegenerative disorders caused by a monoamine imbalance.
Collapse
Affiliation(s)
- Thulasingam Muthukumaran
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India
| | - K Asok Kumar
- Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, India
| | - M Saleshier Francis
- Department of Pharmaceutical Chemistry, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore, India
| |
Collapse
|
4
|
Siswina T, Rustama MM, Sumiarsa D, Apriyanti E, Dohi H, Kurnia D. Antifungal Constituents of Piper crocatum and Their Activities as Ergosterol Biosynthesis Inhibitors Discovered via In Silico Study Using ADMET and Drug-Likeness Analysis. Molecules 2023; 28:7705. [PMID: 38067436 PMCID: PMC10708292 DOI: 10.3390/molecules28237705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Along with the increasing resistance of Candida spp. to some antibiotics, it is necessary to find new antifungal drugs, one of which is from the medicinal plant Red Betel (Piper crocatum). The purpose of this research is to isolate antifungal constituents from P. crocatum and evaluate their activities as ergosterol biosynthesis inhibitors via an in silico study of ADMET and drug-likeness analysis. Two new active compounds 1 and 2 and a known compound 3 were isolated, and their structures were determined using spectroscopic methods, while their bioactivities were evaluated via in vitro and in silico studies, respectively. Antifungal compound 3 was the most active compared to 1 and 2 with zone inhibition values of 14.5, 11.9, and 13.0 mm, respectively, at a concentration of 10% w/v, together with MIC/MFC at 0.31/1.2% w/v. Further in silico study demonstrated that compound 3 had a stronger ΔG than the positive control and compounds 1 and 2 with -11.14, -12.78, -12.00, and -6.89 Kcal/mol against ERG1, ERG2, ERG11, and ERG24, respectively, and also that 3 had the best Ki with 6.8 × 10-3, 4 × 10-4, 1.6 × 10-3, and 8.88 μM. On the other hand, an ADMET analysis of 1-3 met five parameters, while 1 had one violation of Ro5. Based on the research data, the promising antifungal constituents of P. crocatum allow P. crocatum to be proposed as a new antifungal candidate to treat and cure infections due to C. albicans.
Collapse
Affiliation(s)
- Tessa Siswina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
- Department of Midwifery, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Mia Miranti Rustama
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Eti Apriyanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| | - Hirofumi Dohi
- Graduate School of Horticulture, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan;
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (T.S.); (D.S.); (E.A.)
| |
Collapse
|
5
|
Raletsena MV, Pooe OJ, Mongalo NI. A Systematic Review of Curtisia dentata Endemic to South Africa: Phytochemistry, Pharmacology, and Toxicology. Life (Basel) 2023; 13:2159. [PMID: 38004299 PMCID: PMC10672514 DOI: 10.3390/life13112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The use of traditional medicine in treating a variety of both human and animal infections is ancient and still relevant. This is due to the resistance exhibited by most pathogenic microbial stains to currently-used antibiotics. The current work reports the phytochemistry, ethno-medicinal uses, toxicology, and most important pharmacological activities that validate the use of the plant species in African traditional medicine. Curtisia dendata is used in the treatment of many human and animal infections, including diarrhea, skin and related conditions, sexually transmitted infections, cancer, and a variety of ethno-veterinary infections. Pharmacologically, the plant species exhibited potent antimicrobial activity against a variety of pathogens. Further, both extracts and compounds isolated from the plant species exhibited potent antioxidant, anticancer, anti-parasitic, anti-inflammatory, and other important biological activities. Phytochemically, the plant species possess a variety of compounds, particularly triterpenes, that may well explain the various pharmacological activities of the plant species. The toxicological parameters, antimicrobial activities against microorganisms related to sexually transmitted infections, anti-diabetic effects, and inflammatory properties of the plant species are not well studied and still need to be explored. The biological activities observed validate the use of the plant species in African traditional medicine, particularly in the treatment of pulmonary infections associated with Mycobacterium species, and may well be due to the presence of triterpenes prevalent in the leaves.
Collapse
Affiliation(s)
- Maropeng Vellry Raletsena
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Private Bag X06, Florida 0610, South Africa;
| | - Ofentse Jacob Pooe
- Department of Biochemistry, School of Life Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Nkoana Ishmael Mongalo
- College of Agriculture and Environmental Sciences Laboratories, University of South Africa, Private Bag X06, Florida 0610, South Africa;
| |
Collapse
|
6
|
Tiwari AK, Yadav PK, Saklani R, Rana R, Alam MN, Chourasia MK. Development and validation of simultaneous quantification method for gemcitabine and betulinic acid: augmenting industrial application. 3 Biotech 2023; 13:267. [PMID: 37431395 PMCID: PMC10329607 DOI: 10.1007/s13205-023-03668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Combinatorial treatment utilizing a nucleoside analogue gemcitabine (GEM), with a characteristic pentacyclic triterpenoid betulinic acid (BET), has exhibited empowering adequacy in the therapy of cancer. It lessens the advancement of collagen and upgrades the saturation of tumour medicines. With the advancement in nanotechnology, the co-loaded formulation urges for a validated method of estimation. The purposed work entails a robust, simple, and economical analytical method for the simultaneous estimation of GEM and BET through RP-HPLC. Orthophosphoric acid (0.1%)-acetonitrile was considered as the mobile phase for the detection of GEM and BET at 248 nm and 210 nm with retention times of 5 min and 13 min, respectively. The method was further validated as per the regulatory guidelines with all the parameters found within the limit. The developed method with adequate resolution and quantification was found to be linear, accurate, precise, robust, and stable with an intra- and inter-day variability of less than 2%. The method was found specific for GEM and BET with no matrix interference of drug-spiked FBS samples. To demonstrate the applicability of the developed method, a nano-formulation containing GEM and BET was prepared and assessed for various parameters including encapsulation efficiency, loading efficiency, drug release, and drug stability. The method developed can be a possible tool for the simultaneous quantification of GEM-BET in analytical and biological samples.
Collapse
Affiliation(s)
- A. K. Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - P. K. Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - R. Saklani
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - R. Rana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
| | - M. N. Alam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
| | - M. K. Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
7
|
Ferreira MKA, Freitas WPO, Barbosa IM, da Rocha MN, da Silva AW, de Lima Rebouças E, da Silva Mendes FR, Alves CR, Nunes PIG, Marinho MM, Furtado RF, Santos FA, Marinho ES, de Menezes JESA, dos Santos HS. Heterocyclic chalcone ( E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(thiophen-2-yl) prop-2-en-1-one derived from a natural product with antinociceptive, anti-inflammatory, and hypoglycemic effect in adult zebrafish. 3 Biotech 2023; 13:276. [PMID: 37457871 PMCID: PMC10349009 DOI: 10.1007/s13205-023-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03696-8.
Collapse
Affiliation(s)
- Maria Kueirislene Amancio Ferreira
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Wendy Pascoal Oliveira Freitas
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Italo Moura Barbosa
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Matheus Nunes da Rocha
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Antônio Wlisses da Silva
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | - Emanuela de Lima Rebouças
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
| | | | - Carlucio Roberto Alves
- Laboratório de Sistemas de Nanotecnologia e BiomateriaisPrograma de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, CE Brazil
| | - Paulo Iury Gomes Nunes
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | | | | | - Flávia Almeida Santos
- Departamento de Fisiologia e Farmacologia Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE Brazil
| | - Emmanuel Silva Marinho
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Jane Eire Silva Alencar de Menezes
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
| | - Helcio Silva dos Santos
- Laboratório de Química de Produtos Naturais-LQPNS, Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Naturais, Fortaleza, CE Brazil
- Programa de Doutorado em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO), Fortaleza, CE Brazil
- Departamento de Química, Universidade Estadual Vale do Acaraú, Sobral, CE Brazil
| |
Collapse
|
8
|
Kurnia D, Putri SA, Tumilaar SG, Zainuddin A, Dharsono HDA, Amin MF. In silico Study of Antiviral Activity of Polyphenol Compounds from Ocimum basilicum by Molecular Docking, ADMET, and Drug-Likeness Analysis. Adv Appl Bioinform Chem 2023; 16:37-47. [PMID: 37131997 PMCID: PMC10149097 DOI: 10.2147/aabc.s403175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
Aim The SARS-CoV-2 virus is a disease that has mild to severe effects on patients, which can even lead to death. One of the enzymes that act as DNA replication is the main protease, which becomes the main target in the inhibition of the SARS-CoV-2 virus. In finding effective drugs against this virus, Ocimum basilicum is a potential herbal plant because it has been tested to have high phytochemical content and bioactivity. Apigenin-7-glucuronide, dihydrokaempferol-3-glucoside, and aesculetin are polyphenolic compounds found in Ocimum basilicum. Purpose The purpose of this study was to analyze the mechanism of inhibition of the three polyphenolic compounds in Ocimum basilicum against the main protease and to predict pharmacokinetic activity and the drug-likeness of a compound using the Lipinski Rule of Five. Patients and Methods The method used is to predict the molecular docking inhibition mechanism using Autodock 4.0 tools and use pkcsm and protox online web server to analyze ADMET and Drug-likeness. Results The binding affinity for apigenin-7-glucuronide was -8.77 Kcal/mol, dihydrokaempferol-3-glucoside was -8.96 Kcal/mol, and aesculetin was -5.79 Kcal/mol. Then, the inhibition constant values were 375.81 nM, 270.09 nM, and 57.11 µM, respectively. Apigenin-7-glucuronide and dihydrokaempferol-3-glucoside bind to the main protease enzymes on the active sites of CYS145 and HIS41, while aesculetin only binds to the active sites of CYS145. On ADMET analysis, these three compounds met the predicted pharmacokinetic parameters, although there are some specific parameters that must be considered especially for aesculetin compounds. Meanwhile, on drug-likeness analysis, apigenin-7-glucuronide and dihydrokaempferol-3-glucoside compounds have one violation and aesculetin have no violation. Conclusion Based on the data obtained, Apigenin-7-glucuronide and dihydrokaempferol-3-glucoside are compounds that have more potential to have an antiviral effect on the main protease enzyme than aesculetin. Based on pharmacokinetic parameters and drug-likeness, three compounds can be used as lead compounds for further research.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Correspondence: Dikdik Kurnia, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia, Tel/Fax +62-22-7794391, Email
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Sefren Geiner Tumilaar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Hendra Dian Adhita Dharsono
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Meiny Faudah Amin
- Dental Conservation, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| |
Collapse
|
9
|
Bravo-Alfaro DA, Ochoa-Rodríguez LR, Villaseñor-Ortega F, Luna-Barcenas G, García HS. Self-nanoemulsifying drug delivery system (SNEDDS) improves the oral bioavailability of betulinic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Khan A, Khan SU, Khan A, Shal B, Rehman SU, Rehman SU, Htar TT, Khan S, Anwar S, Alafnan A, Rengasamy KRR. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022; 27:molecules27134319. [PMID: 35807562 PMCID: PMC9268648 DOI: 10.3390/molecules27134319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd., Hattar 22610, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Health Sciences, IQRA University, Islamabad Campus (Chak Shahzad), Park link Rd., Islamabad 44000, Pakistan
| | - Sabih Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Shaheed Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Correspondence: or (S.K.); (K.R.R.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Kannan RR Rengasamy
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, Chennai 600077, India
- Correspondence: or (S.K.); (K.R.R.)
| |
Collapse
|
11
|
Giresha AS, Urs D, Manjunatha JG, Sophiya P, Supreetha BH, Jayarama S, Dharmappa KK. Group IIA secreted phospholipase A 2 inhibition by elemolic acid as a function of anti-inflammatory activity. Sci Rep 2022; 12:7649. [PMID: 35538123 PMCID: PMC9087174 DOI: 10.1038/s41598-022-10950-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Human group IIA secreted phospholipase A2 (GIIA) is a key enzyme in inflammatory reactions, worsening the condition of several chronic inflammatory diseases. The natural inhibitors of GIIA potentially block the production of inflammatory mediators. In the present study, elemolic acid, a triterpenoid from Boswellia serrata inhibited the GIIA enzyme in a concentration-dependent manner with IC50 value of 5.70 ± 0.02 µM. The mode of GIIA inhibition was studied by increasing the concentration of the substrate from 30 to 120 nM, and calcium from 2.5 to 15 mM, the level of inhibition was not changed. The inhibitor-enzyme interaction was examined by fluorimetry and Circular Dichroism (CD) studies; elemolic acid altered intrinsic fluorescence intensity and shifted far UV- CD spectra of GIIA enzyme, suggesting the direct interaction with GIIA. Elemolic acid neutralized the GIIA mediated indirect hemolytic activity from 94.5 to 9.8% and reduced GIIA induced mouse paw edema from 171.75 to 113.68%. Elemolic acid also reduced the hemorrhagic effect of GIIA along with Vipera russelii neurotoxic non-enzymatic peptide -VNTx-II (VR-HC-I). Thus, the elemolic acid has been proven as a potent inhibitor of GIIA enzyme and modulated the GIIA induced inflammatory response by in situ and in vivo methods.
Collapse
Affiliation(s)
- Aladahalli S Giresha
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - J G Manjunatha
- Department of Chemistry, FMKMC College Madikeri, Mangalore University Constituent College, Mangalore, Karnataka, 571201, India
| | - P Sophiya
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - B H Supreetha
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - Shankar Jayarama
- Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere, 577002, India
| | - K K Dharmappa
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India.
| |
Collapse
|
12
|
Khan MF, Rashid RB, Rashid MA. Identification of Natural Compounds with Analgesic and Antiinflammatory Properties Using Machine Learning and Molecular Docking Studies. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210728162055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Natural products have been a rich source of compounds for drug discovery. Usually,
compounds obtained from natural sources have little or no side effects, thus searching for new lead
compounds from traditionally used plant species is still a rational strategy.
Introduction:
Natural products serve as a useful repository of compounds for new drugs; however, their
use has been decreasing, in part because of technical barriers to screening natural products in highthroughput
assays against molecular targets. To address this unmet demand, we have developed and validated
a high throughput in silico machine learning screening method to identify potential compounds
from natural sources.
Methods:
In the current study, three machine learning approaches, including Support Vector Machine
(SVM), Random Forest (RF) and Gradient Boosting Machine (GBM) have been applied to develop the
classification model. The model was generated using the cyclooxygenase-2 (COX-2) inhibitors reported
in the ChEMBL database. The developed model was validated by evaluating the accuracy, sensitivity,
specificity, Matthews correlation coefficient and Cohen’s kappa statistic of the test set. The molecular
docking study was conducted on AutoDock vina and the results were analyzed in PyMOL.
Results:
The accuracy of the model for SVM, RF and GBM was found to be 75.40 %, 74.97 % and 74.60
%, respectively, which indicates the good performance of the developed model. Further, the model has
demonstrated good sensitivity (61.25 % - 68.60 %) and excellent specificity (77.72 %- 81.41 %). Application
of the model on the NuBBE database, a repository of natural compounds, led us to identify a natural
compound, enhydrin possessing analgesic and anti-inflammatory activities. The ML methods and the
molecular docking study suggest that enhydrin likely demonstrates its analgesic and anti-inflammatory
actions by inhibiting COX-2.
Conclusion:
Our developed and validated in silico high throughput ML screening methods may assist in
identifying drug-like compounds from natural sources.
Collapse
Affiliation(s)
- Mohammad Firoz Khan
- Computational Chemistry and Bioinformatics Laboratory, Department of Pharmacy, State University of Bangladesh,
Dhaka, 1205, Bangladesh
| | - Ridwan Bin Rashid
- Computational Chemistry and Bioinformatics Laboratory, Department of Pharmacy, State University of Bangladesh,
Dhaka, 1205, Bangladesh
| | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka,
1000, Bangladesh
| |
Collapse
|
13
|
Synthesis, antibiotic modifying activity, ADMET study and molecular docking of chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying MepA efflux pumps. Arch Microbiol 2021; 204:63. [DOI: 10.1007/s00203-021-02666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
|
14
|
Synthesis, antifungal studies, molecular docking, ADME and DNA interaction studies of 4-hydroxyphenyl benzothiazole linked 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Freitas TS, Xavier JC, Pereira RLS, Rocha JE, Campina FF, de Araújo Neto JB, Silva MMC, Barbosa CRS, Marinho ES, Nogueira CES, Dos Santos HS, Coutinho HDM, Teixeira AMR. In vitro and in silico studies of chalcones derived from natural acetophenone inhibitors of NorA and MepA multidrug efflux pumps in Staphylococcus aureus. Microb Pathog 2021; 161:105286. [PMID: 34793877 DOI: 10.1016/j.micpath.2021.105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Bacterial resistance induced by efflux pumps is a frequent concern in clinical treatments involving multi-resistant bacteria. Staphylococcus aureus is a microorganism responsible for several types of infections and has several strains carrying efflux pumps, among them are the strain 1199B (NorA overexpresser), and the strain K2068 (MepA overexpresser). In this work, four chalcones derived from Croton anisodontus with modifications in the B ring in their structures were tested regarding their ability to inhibit NorA and MepA efflux pumps. The efflux pump inhibition mechanism was tested with the ethidium bromide substrate in the presence and absence of standard efflux pump inhibitors. The minimum inhibitory concentration values were also compared to those of strains that do not overexpress these efflux pumps. In order to gain some insights about the efflux pump mechanisms of these chalcones, two homology models were created (NorA and MepA) for a docking procedure. In addition, the ADME properties (absorption, distribution, metabolism and excretion) were also evaluated. The tested chalcones promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps. All four tested chalcones appear to bind to the binding sites of the efflux pump models in the same fashion as other chalcones with efflux pump inhibition capabilities. It was also verified that the chalcones 1-4 are well absorbed in the intestine, but with a decrease in their bioavailability, resulting in a low volume of distribution in the blood plasma, in addition to having a mild CNS activity. However, the chalcone 3 and 4 were not toxic due to metabolic activation. Whereas the chalcones 1 and 2 present a mutagenic risk, depending on the oral dose administered. The tested chalcones have not antibacterial activity; however, they are capable of inhibiting efflux pumps for the 1199B and K2068 strains. They promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps, as well as other associated mechanisms.
Collapse
Affiliation(s)
- Thiago S Freitas
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Jayze C Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Raimundo L S Pereira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Janaína E Rocha
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Fábia F Campina
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - José B de Araújo Neto
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Maria M C Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Cristina R S Barbosa
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Emmanuel S Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Carlos E S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Hélcio S Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | - Henrique D M Coutinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Alexandre M R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
16
|
Synthesis, structural and spectroscopic characterization, in silico study, and antinociceptive effect in adult zebrafish of 2-(4-isobutylphenyl) -N'-phenylpropanohydrazide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
de Oliveira VM, da Rocha MN, Magalhães EP, da Silva Mendes FR, Marinho MM, de Menezes RRPPB, Sampaio TL, Dos Santos HS, Martins AMC, Marinho ES. Computational approach towards the design of artemisinin-thymoquinone hybrids against main protease of SARS-COV-2. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:185. [PMID: 34514004 PMCID: PMC8419828 DOI: 10.1186/s43094-021-00334-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Background The sanitary emergency installed in the world, generated by the pandemic of COVID-19, instigates the search for scientific strategies to mitigate the damage caused by the disease to different sectors of society. The disease caused by the coronavirus, SARS-CoV-2, reached 216 countries/territories, where about 199 million people were reported with the infection. Of these, more than 4 million died. In this sense, strategies involving the development of new antiviral molecules are extremely important. The main protease (Mpro) from SARS-CoV-2 is an important target, which has been widely studied for antiviral treatment. This work aims to perform a screening of pharmacodynamics and pharmacokinetics of synthetic hybrids from thymoquinone and artemisin (THY-ART) against COVID-19. Results Molecular docking studies indicated that hybrids of artemisinin and thymoquinone showed a relevant interaction with the active fraction of the enzyme Mpro, when compared to the reference drugs. Furthermore, hybrids show an improvement in the interaction of substances with the enzyme, mainly due to the higher frequency of interactions with the Thr199 residue. ADMET studies indicated that hybrids tend to permeate biological membranes, allowing good human intestinal absorption, with low partition to the central nervous system, potentiation for CYP-450 enzyme inhibitors, low risk of toxicity compared to commercially available drugs, considering mainly mutagenicity and cardiotoxicity, low capacity of hybrids to permeate the blood–brain barrier, high absorption and moderate permeability in Caco-2 cells. In addition, T1–T7 tend to have a better distribution of their available fractions to carry out diffusion and transport across cell membranes, as well as increase the energy of interaction with the SARS-CoV-2 target. Conclusions Hybrid products of artemisinin and thymoquinone have the potential to inhibit Mpro, with desirable pharmacokinetic and toxicity characteristics compared to commercially available drugs, being indicated for preclinical and subsequent clinical studies against SARS-CoV-2. Emphasizing the possibility of synergistic use with currently used drugs in order to increase half-life and generate a possible synergistic effect. This work represents an important step for the development of specific drugs against COVID-19.
Collapse
Affiliation(s)
- Victor Moreira de Oliveira
- Theoretical and Electrochemical Chemistry Research Group/FAFIDAM, State University of Ceará, Limoeiro do Norte, CE CEP 62930-000 Brazil
| | - Matheus Nunes da Rocha
- Theoretical and Electrochemical Chemistry Research Group/FAFIDAM, State University of Ceará, Limoeiro do Norte, CE CEP 62930-000 Brazil
| | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE CEP 60430-172 Brazil
| | - Francisco Rogênio da Silva Mendes
- Theoretical and Electrochemical Chemistry Research Group/FAFIDAM, State University of Ceará, Limoeiro do Norte, CE CEP 62930-000 Brazil
| | - Márcia Machado Marinho
- Iguatu Faculty of Education, Science and Letters/FECLI, State University of Ceará, Iguatu, CE CEP 63502-253 Brazil
| | | | - Tiago Lima Sampaio
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE CEP 60430-172 Brazil
| | - Hélcio Silva Dos Santos
- Laboratory of Natural Products Chemistry, Synthesis and Biocatalysis of Organic Compounds - LBPNSB, State University of Vale do Acaraú, Sobral, CE CEP 62040370 Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, Fortaleza, CE CEP 60430-172 Brazil
| | - Emmanuel Silva Marinho
- Theoretical and Electrochemical Chemistry Research Group/FAFIDAM, State University of Ceará, Limoeiro do Norte, CE CEP 62930-000 Brazil
| |
Collapse
|
18
|
Xu Y, Wei H, Gao J. Natural Terpenoids as Neuroinflammatory Inhibitors in LPS-stimulated BV-2 Microglia. Mini Rev Med Chem 2021; 21:520-534. [PMID: 31198113 DOI: 10.2174/1389557519666190611124539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
Neuroinflammation is a typical feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Microglia, the resident immune cells of the brain, readily become activated in response to an infection or an injury. Uncontrolled and overactivated microglia can release pro-inflammatory and cytotoxic factors and are the major culprits in neuroinflammation. Hence, research on novel neuroinflammatory inhibitors is of paramount importance for the treatment of neurodegenerative diseases. Bacterial lipopolysaccharide, widely used in the studies of brain inflammation, initiates several major cellular activities that critically contribute to the pathogenesis of neuroinflammation. This review will highlight the progress on terpenoids, an important and structurally diverse group of natural compounds, as neuroinflammatory inhibitors in lipopolysaccharidestimulated BV-2 microglial cells over the last 20 years.
Collapse
Affiliation(s)
- Yuanzhen Xu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
19
|
Wu Y, Nie T, Meng F, Zhou L, Chen M, Sun J, Lu Z, Lu Y. The determination of antibacterial mode for cationic lipopeptides brevibacillins against Salmonella typhimurium by quantum chemistry calculation. Appl Microbiol Biotechnol 2021; 105:5643-5655. [PMID: 34160646 DOI: 10.1007/s00253-021-11398-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
Brevibacillins are broad-spectrum cationic antimicrobial lipopeptides produced by Brevibacillus laterosporus fmb70 CGMCC 18426. The antibacterial mode of brevibacillins against Salmonella typhimurium CICC 21493 was investigated by quantum chemistry calculation in this study. The addition of LPS, Mg2+, and Ca2+ partially reduced the antimicrobial activity of brevibacillin and brevibacillin V against S. typhimurium, which indicated that the two cationic lipopeptides could bind to LPS and displaced the divalent cations on the LPS network. Release of LPS from S. typhimurium by brevibacillin and brevibacillin V resulted in destroying the dense LPS network and increasing the permeability of the outer membrane. Quantum chemistry calculation analysis revealed that Lys7 is the most critical amino acid residue to destroy the outer membrane. The total average N-H charge difference of the three protonated amino groups (Orn3-NH3, Lys7-NH3, and Lys10-NH3) determined the ability of brevibacillin V to bind LPS stronger than brevibacillin. Calcein complete leakage from liposomes and release of DiSC3-5 from the cytoplasmic membrane (CM) indicated that brevibacillin and brevibacillin V may destroy the CM. Brevibacillin and brevibacillin V exhibited their antimicrobial activities through membrane damages, where the OM permeability with high concentration of 64-256 µg/mL and membrane damage of CM with a low concentration of 4 μg/mL. Our finding might be helpful to understand the broad-spectrum antimicrobial mechanism of cationic lipopeptide and to design the novel antimicrobial peptide. KEY POINTS: • Brevibacillin V had stronger affinity for LPS than brevibacillin. • The N-H charge difference was the key of the difference in the affinity to LPS. • Brevibacillins inhibited Salmonella by displacing the divalent cations on the LPS.
Collapse
Affiliation(s)
- Yubo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Meirong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu Province, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
20
|
Rocha JE, de Freitas TS, da Cunha Xavier J, Pereira RLS, Junior FNP, Nogueira CES, Marinho MM, Bandeira PN, de Oliveira MR, Marinho ES, Teixeira AMR, Dos Santos HS, Coutinho HDM. Antibacterial and antibiotic modifying activity, ADMET study and molecular docking of synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. Biomed Pharmacother 2021; 140:111768. [PMID: 34058442 DOI: 10.1016/j.biopha.2021.111768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
A large number of infections are caused by multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. Because of that many strategies are being developed in order to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are known as α, β-unsaturated ketones, characterized by having the presence of two aromatic rings that are joined by a three-carbon chain, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities, which include anticancer, anti-inflammatory, antioxidants, antimicrobials, anti-tuberculosis, anti-HIV, antimalarial, anti-allergic, antifungal, antibacterial, and antileishmanial. The objective of this work was evaluate the antibacterial and antibiotic modifying activity of chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one against the bacteria Staphylococcus aureus carrying a NorA and MepA efflux pump. The results showed that chalcone was able to synergistically modulate the action of Norfloxacin and Ethidium Bromide against the bacteria Staphylococcus aureus 1199B and K2068, respectively. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalcone did not present a severe risk of toxicity such as genetic mutation or cardiotoxicity, constituting a good pharmacological active ingredient.
Collapse
Affiliation(s)
- Janaína Esmeraldo Rocha
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Thiago Sampaio de Freitas
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Jayze da Cunha Xavier
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Raimundo Luiz Silva Pereira
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | | | - Carlos Emídio Sampaio Nogueira
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Márcia Machado Marinho
- Faculdade de Educação, Ciência e Letras de Iguatu, Universidade Estadual do Ceará, Iguatu, Ceará, Brazil
| | - Paulo Nogueira Bandeira
- Universidade Estadual do Vale do Acaraú, Centro de Ciencias Exatas e Tecnologia, Sobral, Ceará, Brazil
| | | | - Emmanuel Silva Marinho
- Universidade Estadual do Ceará, Faculdade de Filosofia Dom Aureliano Matos, Limoeiro do Norte, Ceará, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil; Universidade Estadual do Vale do Acaraú, Centro de Ciencias Exatas e Tecnologia, Sobral, Ceará, Brazil; Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Fortaleza, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil.
| |
Collapse
|
21
|
Vergoten G, Bailly C. In silico analysis of the antidiabetic terpenoid acankoreagenin binding to PPARγ. In Silico Pharmacol 2021; 9:32. [PMID: 33936928 PMCID: PMC8050143 DOI: 10.1007/s40203-021-00091-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acankoreagenin (ACK) is a lupane triterpene found in several Acanthopanax and Schefflera plant species. ACK, also known as acankoreanogenin or HLEDA, bears a major structural analogy with other lupane triterpenoids such as impressic acid (IA) and the largely used phytochemical betulinic acid (BA). These compounds display marked anti-inflammatory, anti-diabetes, and anti-cancer properties. BA can form stable complexes with the peroxisome proliferator-activated receptor gamma (PPARγ). The tridimensional structure of the BA-PPARγ complex was used to perform a molecular docking analysis of the binding of ACK and IA to the protein. The 3-hydroxyl epimers (R/S) of each natural product were also modeled to examine the role of the C3-OH stereochemistry that distinguishes BA [3(S)] from ACK and AI [3(R)]. Calculations indicate that ACK can form more stable complexes with PPARγ than BA, upon insertion of the drug into the same binding pocket. The inversion of the C3-OH stereochemistry is not an obstacle for binding and the additional carboxy group of ACK at C23 position seems to reinforce the protein interaction. The 3-hydroxyl group does not play a major role in the geometry of the protein-drug complex, which is preserved between BA and ACK. Additional structure-binding relationships are provided, through the evaluation of the PPARγ binding capacity of ACK derivatives. Binding of ACK to PPARγ would account for its marked antidiabetic effect, at least partially. ACK can be used as a platform to design new antidiabetic compounds.
Collapse
Affiliation(s)
- Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE, U1286, 3 rue du Professeur Laguesse, BP-83, 59006 Lille, France
| | | |
Collapse
|
22
|
Zhou Q, Tan Z, Yang D, Tu J, Wang Y, Zhang Y, Liu Y, Gan G. Improving the Solubility of Aripiprazole by Multicomponent Crystallization. CRYSTALS 2021; 11:343. [DOI: 10.3390/cryst11040343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Aripiprazole (ARI) is a third-generation antipsychotic with few side effects but a poor solubility. Salt formation, as one common form of multicomponent crystals, is an effective strategy to improve pharmacokinetic profiles. In this work, a new ARI salt with adipic acid (ADI) and its acetone hemisolvate were obtained successfully, along with a known ARI salt with salicylic acid (SAL). Their comprehensive characterizations were conducted using X-ray diffraction and differential scanning calorimetry. The crystal structures of the ARI-ADI salt acetone hemisolvate and ARI-SAL salt were elucidated by single-crystal X-ray diffraction for the first time, demonstrating the proton transfer from a carboxyl group of acid to ARI piperazine. Theoretical calculations were also performed on weak interactions. Moreover, comparative studies on pharmaceutical properties, including powder hygroscopicity, stability, solubility, and the intrinsic dissolution rate, were carried out. The results indicated that the solubility and intrinsic dissolution rate of the ARI-ADI salt and its acetone hemisolvate significantly improved, clearly outperforming that of the ARI-SAL salt and the untreated ARI. The study presented one potential alternative salt of aripiprazole and provided a potential strategy to increase the solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Qi Zhou
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| | - Zhongchuan Tan
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| | - Desen Yang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| | - Jiyuan Tu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| | - Yezi Wang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| | - Ying Zhang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| | - Yanju Liu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| | - Guoping Gan
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430070, China
- Technical Engineering Research Center of Traditional Chinese Medicine Processing in Hubei Province, Wuhan 430070, China
| |
Collapse
|
23
|
Bhowmik S, Anand P, Das R, Sen T, Akhter Y, Das MC, De UC. Synthesis of new chrysin derivatives with substantial antibiofilm activity. Mol Divers 2021; 26:137-156. [PMID: 33438129 DOI: 10.1007/s11030-020-10162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
Multidrug resistance mechanism of microorganisms towards conventional antimicrobials nowadays faces a common health problem. So, searching and development of new antibacterials are in the frontier areas of biochemistry. Functionalizations of various natural products or synthesis of compounds through molecular modeling followed by virtual screening are the ways to obtain potential leads. Chrysin is one of the plant secondary metabolites and is ubiquitously present in majority of plants. It has multi-dimensional potentiality however, with a very low bioavailability causing a very low efficacy. Very few chrysin derivatives possessing antimicrobial activity with a low anti-biofilm efficacy have been found in the literature. Thus, it has been attempted to synthesize a series of new chrysin derivatives (CDs). In this study, twenty-two new derivatives have been synthesized via its 7-OH modulation and antibiofilm activity was evaluated against a model bacterium viz. Escherichia coli MTCC 40 (Gram negative). Eleven CDs coded as 2a, 2b, 2c, 2e, 2f, 2g, 2h, 2i, 3j, 3k and 3l have been found more potent compared to chrysin (precursor of CDs) against planktonic form of E. coli. Biofilm inhibition studies indicated a noteworthy results for 2a (93.57%), 2b (92.14%), 2f (92.14%) and 3l (93.57%) compared to chrysin (33.57%). E. coli motility was also highly restricted by 2a, 2b, 2f and 3l than chrysin at their sub-inhibitory concentrations. Solubility studies indicated an extended-release of 2a, 2b, 2f and 3l in physiological systems. Relatively higher bioavailability of 2a, 2b, 2f and 3l than chrysin was revealed from the dissolution experiments and was further validated through in silico ADME-based SAR analysis. Hence, this study is more interesting in regard to antibacterial potentiality of chrysin derivatives against Escherichia coli MTCC 40 (Gram negative). Thus, this article might be useful for further design and development of new leads in the context of biofilm-associated bacterial infections.
Collapse
Affiliation(s)
- Sukhen Bhowmik
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, 226025, India
| | - Riyanki Das
- Department of Medical Laboratory Technology, Women's Polytechnic, Hapania, Tripura, 799130, India
- Department of Nanotechnology, North-Eastern Hill University, Umshing Mawkynroh, Shillong, 793022, India
| | - Tirtharaj Sen
- Division of Electrical Engineering, Women's Polytechnic, Hapania, Tripura, 799130, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh, 226025, India
| | - Manash C Das
- Department of Medical Laboratory Technology, Women's Polytechnic, Hapania, Tripura, 799130, India.
| | - Utpal C De
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
24
|
Li C, Wu D, Li J, Ji X, Qi L, Sun Q, Wang A, Xie C, Gong J, Chen W. Multicomponent crystals of clotrimazole: a combined theoretical and experimental study. CrystEngComm 2021. [DOI: 10.1039/d1ce00934f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Compared with clotrimazole, some multicomponent crystals showed an improvement in solubility and dissolution rate.
Collapse
Affiliation(s)
- Chang Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Di Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiulong Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xu Ji
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Luguang Qi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qin Sun
- Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, Liaoning, 110021 P. R. China
| | - Aiyu Wang
- Shandong Lukang Pharmaceutical Co., Ltd, Jining, Shandong, 272104, P. R. China
| | - Chuang Xie
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Junbo Gong
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Wei Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
25
|
Fang L, Xiao Y, Zhang C, Gao Z, Wu S, Gong J, Rohani S. Intermolecular interactions and solubility behavior of multicomponent crystal forms of 2,4-D: design, structure analysis, and solid-state characterization. CrystEngComm 2021. [DOI: 10.1039/d1ce01080h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Five new multicomponent solid forms of 2,4-D were successfully synthesized. The equilibrium solubility measurement confirmed the improvements in water solubility of new multicomponent crystals.
Collapse
Affiliation(s)
- Lan Fang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, P. R. China
| | - Yuntian Xiao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, P. R. China
| | - Chengtian Zhang
- China Nuclear Mining Science and Technology Corporation, Tongzhou, Beijing, 10000, P. R. China
| | - Zhenguo Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, P. R. China
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, P. R. China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin University, Tianjin, 300072, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
26
|
Sun Y, Yang AWH, Hung A, Lenon GB. Screening for a Potential Therapeutic Agent from the Herbal Formula in the 4 th Edition of the Chinese National Guidelines for the Initial-Stage Management of COVID-19 via Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3219840. [PMID: 33381197 PMCID: PMC7759025 DOI: 10.1155/2020/3219840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND COVID-19 caused by SARS-CoV-2 infection has been spreading through many countries since the end of 2019. The 4th edition of the national guidelines for the management of COVID-19 provides an herbal formula with 9 herbs for its management. Aim of Study. We aimed to predict the mechanism of binding of SARS-CoV-2 and SARS-CoV spike glycoproteins with angiotensin-converting enzyme 2 (ACE2) to provide a molecular-level explanation of the higher pathogenicity of SARS-CoV-2 and to identify protein sites which may be targeted by therapeutic agents to disrupt virus-host interactions. Subsequently, we aimed to investigate the formula for the initial-stage management to identify a therapeutic agent with the most likely potential to become pharmaceutical candidate for the management of this disease. MATERIALS AND METHODS GenBank and SWISS-MODEL were applied for model creation. ClusPro was used for protein-protein docking. PDBePISA was applied for identification of possible binding sites. TCMSP was employed for identification of the chemical compounds. AutoDock Vina together with PyRx was used for the prediction and evaluation of binding pose and affinity to ACE2. SwissADME and PreADME were applied to screening and prediction of the pharmacokinetic properties of the identified chemical compounds. PyMOL was used to visualise the structural models of SARS-CoV-2 and SARS-CoV spike glycoproteins complexed to ACE2 and to examine their interactions. RESULTS SARS-CoV-2 had two chains (labelled chains B and C) which were predicted to bind with ACE2. In comparison, the SARS-CoV had only one chain (labelled chain C) predicted to bind with ACE2. The spike glycoproteins of both viruses were predicted to bind with ACE2 via position 487. Molecular docking screening and pharmacokinetic property prediction of the herbal compounds indicated that atractylenolide III (-9.1 kcal/mol) from Atractylodes lancea (Thunb.) Dc. (Cangzhu) may be a candidate therapeutic agent for initial-stage management. CONCLUSIONS Atractylenolide III is predicted to have a strong binding affinity with ACE2 and eligible pharmacokinetic properties, anti-inflammatory effects and antiviral effects in in vitro study, and high distribution on the lungs in in vivo study.
Collapse
Affiliation(s)
- Yue Sun
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne 3083, Australia
| | - George Binh Lenon
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
27
|
Xu X, Zhang J, Zhang Z, Wang M, Liu Y, Li X. Systems pharmacology in combination with proteomics reveals underlying mechanisms of Xihuang pill against triple-negative breast cancer. Bioengineered 2020; 11:1170-1188. [PMID: 33092442 PMCID: PMC8291799 DOI: 10.1080/21655979.2020.1834726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Xihuang pill (XHP), a traditional Chinese herbal formula, has been clinically used as an adjuvant therapy against triple-negative breast cancer (TNBC) via inhibiting cancer cell invasion and proliferation, as well as promoting cancer cell apoptosis. However, its anti-TNBC bio-active ingredients and possible mechanisms are still unclear. Herein, the hub bio-active compounds and underlying mechanisms of XHP against TNBC were systematically elucidated by integrating systems pharmacology approach and in vitro proteomics analysis. Using systems pharmacology analysis and molecular docking evaluation, 28 bio-active compounds and 10 potential therapeutic targets of XHP were identified. Functional analysis showed that the core therapeutic targets against TNBC were mainly involved in epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway to prevent cancer cell proliferation and angiogenesis, as well as to enhance cancer cell apoptosis. The in vitro proteomics analysis identified 153 differentially expressed proteins (DEPs), including HASP90AA1, AKT1, and EGFR, which were also identified as therapeutic targets against TNBC through systems pharmacology analysis. Protein function analysis showed that the DEPs were mainly involved in PI3K-AKT signaling pathway, which was consistent with the result of systems pharmacology, suggesting the reliability of systems pharmacology analysis. Taken together, these findings uncover the underlying mechanism of XHP against TNBC, and provide a scientific method for the rational development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xingchao Xu
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jimei Zhang
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zhenhua Zhang
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Meng Wang
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Yaping Liu
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| |
Collapse
|
28
|
Ali F, Chorsiya A, Anjum V, Khasimbi S, Ali A. A systematic review on phytochemicals for the treatment of dengue. Phytother Res 2020; 35:1782-1816. [PMID: 33118251 DOI: 10.1002/ptr.6917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/23/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Dengue fever is prevalent in subtopic regions, producing mortality and morbidity worldwide, which have been of major concern to different governments and World Health Organization. The search of new anti-dengue agents from phytochemicals was assumed to be highly emergent in past. The phytochemicals have been used in wide distribution of vector ailments such as malaria. The demand of the phytochemicals is based on the medicines which are mostly considered to be safer, less harmful than synthetic drugs and nontoxic. This review mentions majorly about the phytochemicals potentially inhibiting dengue fever around the world. The phytochemicals have been isolated from different species, have potential for the treatment of dengue. Different crude extracts and essential oils obtained from different species showed a broad activity against different phytochemicals. The current studies showed that natural products represent a rich source of medicines toward the dengue fever. Furthermore, ethnobotanical surveys and laboratory investigation established identified natural plants species in the development of drug discovery to control the dengue fever.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Licensing, Laboratory Services, Botswana Medicines Regulatory Authority, Gaborone, Botswana
| | - Anushma Chorsiya
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Varisha Anjum
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), New Delhi, India
| | - Asad Ali
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
29
|
Yang Y, Sun M, Yu Z, Liu J, Yan W, Liu Z, Wei M, Wang H. Designing high affinity target-binding peptides to HLA-E: a key membrane antigen of multiple myeloma. Aging (Albany NY) 2020; 12:20457-20470. [PMID: 33115963 PMCID: PMC7655190 DOI: 10.18632/aging.103858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that is currently incurable. Finding new targets and designing drugs are crucial for the treatment of MM. The two datasets (GSE6691 and GSE39754) are used to screen highly expressed antigen on MM cells. HLA-E was an ideal target for it was a hub gene, and also located in one of the key clusters. Highly expression of HLA-E mRNA on MM cells was also confirmed by real-time qPCR testing the MM patients' samples in Shengjing hospital. Crystal structure of HLA-E was obtained from Protein Data Bank (PDB ID: 3CDG) which was used to design targeting peptides with Molecular Operating Environment software. By analyzing interaction between CD94/NKG2A and HLA-E, a peptide with twelve amino acids was screened as a model peptide. Peptides library was constructed by randomly replaced non-key amino acid. Peptide-protein docking method was used to identify high affinity peptides. PEPTIDE 1-3 and model peptide were synthesized and identified the affinity to HLA-E by flow cytometer and confocal laser microscopy. At last, PEPTIDE3 (NALDEYCEDKNR) was found with the highest affinity. Taking all, HLA-E is a new treatment target, and PEPTIDE 3 is an ideal high affinity target-binding peptide candidate.
Collapse
Affiliation(s)
- Ying Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Jinwei Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
- Department of Pharmacy, Chifeng Municipal Hospital, Chifeng Inner Mongolia, China
| | - Wei Yan
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Hongtao Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Anti-cancer potential of (1,2-dihydronaphtho[2,1-b]furan-2-yl)methanone derivatives. Bioorg Med Chem Lett 2020; 30:127476. [PMID: 32781215 DOI: 10.1016/j.bmcl.2020.127476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
A series of 1,2-dihydronaphtho[2,1-b]furan derivatives were synthesized by cyclizing 1-(aryl/alkyl(arylthio)methyl)-naphthalen-2-ol and pyridinium bromides in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in very good yield. The synthesized compounds were evaluated for their anti-proliferative potential against human triple negative MDA-MB-468 and MCF-7 breast cancer cells and non-cancerous WI-38 cells (lung fibroblast cell) using MTT experiments. Among 21 synthesized compounds, three compounds (3a, 3b and 3 s) showed promising anti-cancer potential and compound 3b was found to have best anti-proliferative activities based on the results of several biochemical and microscopic experiments.
Collapse
|
31
|
Oliveira VC, Naves MPC, de Morais CR, Constante SAR, Orsolin PC, Alves BS, Rinaldi Neto F, da Silva LHD, de Oliveira LTS, Ferreira NH, Esperandim TR, Cunha WR, Tavares DC, Spanó MA. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food Chem Toxicol 2020; 138:111228. [DOI: 10.1016/j.fct.2020.111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
|
32
|
Conceptual DFT study of the chemical reactivity of four natural products with anti-sickling activity. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1438-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Roman DL, Roman M, Som C, Schmutz M, Hernandez E, Wick P, Casalini T, Perale G, Ostafe V, Isvoran A. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. Front Bioeng Biotechnol 2019; 7:214. [PMID: 31552240 PMCID: PMC6743017 DOI: 10.3389/fbioe.2019.00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Chitosan is a natural polymer revealing an increased potential to be used in different biomedical applications, including drug delivery systems, and tissue engineering. It implies the evaluation of the organism response to the biomaterial implantation. Low-molecular degradation products, the chito-oligomers, are resulting mainly from the influence of enzymes, which are found in the organism fluids. Within this study, we have performed the computational assessment of pharmacological profiles and toxicological effects on human health of small chito-oligomers with distinct molecular weights, deacetylation degrees, and acetylation patterns. Our approach is based on the fact that regulatory agencies and researchers in the drug development field rely on the use of modeling to predict biological effects and to guide decision making. To be considered as valid for regulatory purposes, every model that is used for predictions should be associated with a defined toxicological endpoint and has appropriate robustness and predictivity. Within this context, we have used FAF-Drugs4, SwissADME, and PreADMET tools to predict the oral bioavailability of chito-oligomers and SwissADME, PreADMET, and admetSAR2.0 tools to predict their pharmacokinetic profiles. The organs and genomic toxicities have been assessed using admetSAR2.0 and PreADMET tools but specific computational facilities have been also used for predicting different toxicological endpoints: Pred-Skin for skin sensitization, CarcinoPred-EL for carcinogenicity, Pred-hERG for cardiotoxicity, ENDOCRINE DISRUPTOME for endocrine disruption potential and Toxtree for carcinogenicity and mutagenicity. Our computational assessment showed that investigated chito-oligomers reflect promising pharmacological profiles and limited toxicological effects on humans, regardless of molecular weight, deacetylation degree, and acetylation pattern. According to our results, there is a possible inhibition of the organic anion transporting peptides OATP1B1 and/or OATP1B3, a weak potential of cardiotoxicity, a minor probability of affecting the androgen receptor, and phospholipidosis. Consequently, these results may be used to guide or to complement the existing in vitro and in vivo toxicity tests, to optimize biomaterials properties and to contribute to the selection of prototypes for nanocarriers.
Collapse
Affiliation(s)
- Diana Larisa Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Marin Roman
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Claudia Som
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Mélanie Schmutz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Edgar Hernandez
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, St. Gallen, Switzerland
| | - Tommaso Casalini
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Giuseppe Perale
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Adriana Isvoran
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| |
Collapse
|
34
|
Yan W, Li SX, Wei M, Gao H. Identification of MMP9 as a novel key gene in mantle cell lymphoma based on bioinformatic analysis and design of cyclic peptides as MMP9 inhibitors based on molecular docking. Oncol Rep 2018; 40:2515-2524. [PMID: 30226602 PMCID: PMC6151885 DOI: 10.3892/or.2018.6682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive disease. MCL is associated with poor patient prognosis and limited survival. To identify key genes and explore targeting cyclic peptide inhibitors for the treatment of MCL, we downloaded two gene expression profiles (GSE32018 and GSE9327) from the Gene Expression Omnibus (GEO) database. We screened 84 differentially expressed genes (DEGs). Pathway analysis showed that DEMs were mainly enriched in the ‘Pathway in cancer’, ‘PI3K-Akt signaling pathway’, ‘Cytokine-cytokine receptor interaction’, ‘Rap1 signaling pathway’, ‘NF-κB signaling pathway’ and ‘Leukocyte trans-endothelial migration’. We subsequently constructed a protein-protein interaction (PPI) network of DEGs. In addition, matrix metalloproteinase 9 (MMP9) with a high degree in the PPI network was identified as a hub gene in MCL. Meanwhile in the Molecular Complex Detection (MCODE) analysis, MMP9 was located in the important cluster. Thus, MMP9 can be used as a therapeutic target for MCL and we designed cyclic peptides as MMP9 inhibitors. MMP9 protein structure was gathered from the Protein Data Bank (PDB), with a PDB ID: 1L6J. MMP9 and cyclic peptides were docked using Molecular Operating Environment (MOE) software after structural optimization. It was revealed that cyclic peptide 2 bound deeply in the binding pocket of MMP9 and had interaction with the active-site Zn2+ ion in the catalytic domain. Cyclic peptides 1, 2, 4–6 also displayed potential interaction with active residues of MMP9; thus, these cyclic peptides can serve as potential drug candidates to block MMP9 activity and future studies are warranted to confirm their efficacy.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hua Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
35
|
Kwofie SK, Dankwa B, Odame EA, Agamah FE, Doe LPA, Teye J, Agyapong O, Miller WA, Mosi L, Wilson MD. In Silico Screening of Isocitrate Lyase for Novel Anti-Buruli Ulcer Natural Products Originating from Africa. Molecules 2018; 23:E1550. [PMID: 29954088 PMCID: PMC6100440 DOI: 10.3390/molecules23071550] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
Buruli ulcer (BU) is caused by Mycobacterium ulcerans and is predominant in both tropical and subtropical regions. The neglected debilitating disease is characterized by chronic necrotizing skin lesions attributed to a mycolactone, which is a macrolide toxin secreted by M. ulcerans. The preferred treatment is surgical excision of the lesions followed by a prolonged combination antibiotic therapy using existing drugs such as rifampicin and streptomycin or clarithromycin. These antibiotics appear not to be adequately potent and efficacious against persistent and late stage ulcers. In addition, emerging drug resistance to treatment poses great challenges. There is a need to identify novel natural product-derived lead compounds, which are potent and efficacious for the treatment of Buruli ulcer. Natural products present a rich diversity of chemical compounds with proven activity against various infectious diseases, and therefore, are considered in this study. This study sought to computationally predict natural product-derived lead compounds with the potential to be developed further into potent drugs with better therapeutic efficacy than the existing anti-buruli ulcer compounds. The three-dimensional (3D) structure of Isocitrate lyase (ICL) of Mycobacterium ulcerans was generated using homology modeling and was further scrutinized with molecular dynamics simulations. A library consisting of 885 compounds retrieved from the AfroDb database was virtually screened against the validated ICL model using AutoDock Vina. AfroDb is a compendium of “drug-like” and structurally diverse 3D structures of natural products originating from different geographical regions in Africa. The molecular docking with the ICL model was validated by computing a Receiver Operating Characteristic (ROC) curve with a reasonably good Area Under the Curve (AUC) value of 0.89375. Twenty hit compounds, which docked firmly within the active site pocket of the ICL receptor, were assessed via in silico bioactivity and pharmacological profiling. The three compounds, which emerged as potential novel leads, comprise ZINC38143792 (Euscaphic acid), ZINC95485880, and ZINC95486305 with reasonable binding energies (high affinity) of −8.6, −8.6, and −8.8 kcal/mol, respectively. Euscaphic acid has been reported to show minimal inhibition against a drug-sensitive strain of M. tuberculosis. The other two leads were both predicted to possess dermatological activity while one was antibacterial. The leads have shown promising results pertaining to efficacy, toxicity, pharmacokinetic, and safety. These leads can be experimentally characterized to assess their anti-mycobacterial activity and their scaffolds may serve as rich skeletons for developing anti-buruli ulcer drugs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
- Department of Biochemistry, Cell and Molecular Biology, West African Center for Cell Biology and Infectious Pathogens, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Bismark Dankwa
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Emmanuel A Odame
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Francis E Agamah
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Lady P A Doe
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Joshua Teye
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Odame Agyapong
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Whelton A Miller
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Chemistry & Physics, College of Science and Technology, Lincoln University, Philadelphia, PA 19104, USA.
| | - Lydia Mosi
- Department of Biochemistry, Cell and Molecular Biology, West African Center for Cell Biology and Infectious Pathogens, University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P. O. Box LG 77, Legon, Accra, Ghana.
| |
Collapse
|