1
|
Gong YX. Research progress of effective components of traditional Chinese medicine in intervening apoptosis of renal tubular epithelial cells in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119874. [PMID: 40280372 DOI: 10.1016/j.jep.2025.119874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apoptosis of renal tubular epithelial cells (RTECs) is a critical pathological feature of diabetic kidney disease (DKD), a primary contributor to end-stage renal disease (ESRD). Traditional Chinese medicine (TCM) has shown potential in modulating RTECs apoptosis and alleviating DKD progression, making it a promising area for further investigation. AIM OF THE STUDY This study aims to summarize the apoptotic pathways implicated in DKD, analyze existing research on the effects of TCM monomers and compounds on RTECs apoptosis, and elucidate the molecular mechanisms underlying these effects. Additionally, this study emphasizes the significant role of TCM in mitigating DKD progression. MATERIALS AND METHODS Relevant literature was systematically retrieved from ancient Chinese medicine texts and modern scientific databases, including CNKI, Web of Science, and PubMed, using keywords such as "Traditional Chinese Medicine", "Diabetic Kidney Disease", "Diabetic Nephropathy", "Renal Tubular Epithelial Cells", and "Apoptosis". The collected information was synthesized and analyzed. RESULTS This review systematically analyzed 187 relevant studies, focusing on the mechanisms and clinical applications of 16 TCM monomers and 20 TCM compounds in DKD treatment. Key bioactive compounds, such as berberine, astragaloside IV, and tanshinone IIA, have demonstrated renoprotective effects by mitigating oxidative stress and inflammation, as well as regulating critical signaling pathways, including PI3K/Akt, NF-κB, and TGF-β/Smad, to suppress RTECs apoptosis and decelerate DKD progression. Additionally, several TCM compounds have shown significant efficacy in clinical studies, reducing proteinuria and enhancing renal function, thereby reinforcing the therapeutic potential of TCM in DKD management. CONCLUSIONS RTECs apoptosis is a critical pathological feature of DKD. TCM exhibits significant therapeutic potential by intervening in this process through multiple pathways. This study highlights the ability of TCM to exert anti-apoptotic and renoprotective effects by modulating oxidative stress, inflammatory responses, and multiple cellular signaling pathways. The multi-component and multi-target characteristics of TCM offer a promising avenue for the development of novel therapeutic strategies. However, further rigorous research and high-quality clinical trials are required to validate its efficacy and elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Yu Xin Gong
- Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Li C, Huang H, Wang R, Zhang C, Huang S, Wu J, Mo P, Yu H, Li S, Chen J. Jian-Pi-Yi-Shen formula restores iron metabolism from dysregulation in anemic rats with adenine-induced nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116526. [PMID: 37088234 DOI: 10.1016/j.jep.2023.116526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jian-Pi-Yi-Shen (JPYS) is a herbal decoction being used to relieve the symptoms of chronic kidney disease (CKD) and its complications, including anemia, for over twenty years. Nonetheless, it is unclear how JPYS influences renal anemia and iron metabolism. AIM OF THE STUDY An analysis of network pharmacology, chemical profiling, and in vivo experiments was conducted to identify the impact of JPYS on JAK2-STAT3 pathway and iron utilization in renal anemia and CKD. MATERIALS AND METHODS The chemical properties of JPYS and its exposed ingredients were detected in vivo. And based on the aforesaid chemical compounds, the potential targets and signaling pathways of JPYS for renal anemia treatment were predicted by network pharmacology. Afterward, an adenine-feeding animal model of CKD-related anemia was developed to verify the mechanism by which JPYS modulates iron recycling to treat renal anemia. Renal injury was estimated by serum creatinine (Scr), blood urea nitrogen (BUN), histopathological examinations and fibrosis degree. Western blot, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry approaches were utilized to assess the levels of JAK2, STAT3 and iron metabolism-related factors. RESULTS There were 164 active ingredients identified in JPYS, including prototypes and metabolites in vivo were identified in JPYS, and 21 core targets were found through network pharmacology based on topological characteristics. Combined with the core targets and pathway enrichment analysis, the majority of the candidate targets were associated with the JAK2-STAT3 signaling pathways. Experimental results indicated that JPYS treatment significantly decreased the expression of BUN and Scr, restored renal pathological damage, down-regulated fibrosis degree, and improved hematological parameters such as red blood cell, hemoglobin and hematocrit in CKD rats. Furthermore, JPYS significantly restored iron metabolism from dysregulation by increasing the levels of iron and ferritin in the serum, inhibiting the production of hepcidin in liver and serum, and regulating transferrin receptor 1 in bone marrow. Meanwhile, the expression of JAK2 and STAT3 was suppressed by JPYS treatment. CONCLUSIONS Based on these results, JPYS reduces hepcidin levels by inhibiting the activation of JAK2-STAT3 signaling, thereby protecting against iron deficiency anemia.
Collapse
Affiliation(s)
- Changhui Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Haipiao Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Rui Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Chi Zhang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jinru Wu
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Pingli Mo
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Huimin Yu
- School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Shunmin Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
3
|
Gui T, Chen Q, Li J, Lu K, Li C, Xu B, Chen Y, Men J, Kullak-Ublick GA, Wang W, Gai Z. Astragaloside IV alleviates 1-deoxysphinganine-induced mitochondrial dysfunction during the progression of chronic kidney disease through p62-Nrf2 antioxidant pathway. Front Pharmacol 2023; 14:1092475. [PMID: 37033627 PMCID: PMC10079923 DOI: 10.3389/fphar.2023.1092475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Chronic kidney disease (CKD) can lead to significant elevation of 1-deoxysphingolipids (1-deoxySL). The increase of 1-deoxySL in turn can result in mitochondrial damage and oxidative stress, which can cause further progression of CKD. Methods: This study assessed the therapeutic effect of Astragaloside IV (AST) against 1-deoxySL-induced cytotoxicity in vitro and in rats with CKD. HK-2 cells were exposed to 1-deoxysphinganine (doxSA) or doxSA + AST. doxSA-induced mitochondrial dysfunction and oxidative stress were evaluated by immunostaining, real-time PCR, oxidative stress sensor, and transmission electron microscopy. The potential effects of AST on kidney damage were evaluated in a rat 5/6 nephrectomy (5/6 Nx) model of CKD. Results: The findings of in vitro experiments showed that doxSA induced mitochondrial damage, oxidative stress, and apoptosis. AST markedly reduced the level of mitochondrial reactive oxygen species, lowered apoptosis, and improved mitochondrial function. In addition, exposure to AST significantly induced the phosphorylation of p62 and the nuclear translocation of Nrf2 as well as its downstream anti-oxidant genes. p62 knock-down fully abolished Nrf2 nuclear translocation in cells after AST treatment. However, p62 knock-down did not affect TBHQ-induced Nrf2 nuclear translocation, indicating that AST can ameliorate doxSA-induced oxidative stress through modulation of p62 phosphorylation and Nrf2 nuclear translocation. Conclusion: The findings indicate that AST can activate Nrf2 antioxidant pathway in a p62 dependent manner. The anti-oxidative stress effect and the further mitochondrial protective effect of AST represent a promising therapeutic strategy for the progression of CKD.
Collapse
Affiliation(s)
- Ting Gui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingfa Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan, China
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People’s Hospital, Liaocheng, China
| | - Jiangsong Li
- Department of Urology, Liaocheng People’s Hospital, Liaocheng, China
| | - Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingwen Men
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO and Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| | - Weihua Wang
- The Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| | - Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Zhibo Gai, ; Weihua Wang, ; Gerd A. Kullak-Ublick,
| |
Collapse
|
4
|
A Chinese Medicine Compound Alleviates Cisplatin-Induced Acute Kidney Injury via Its Antiapoptosis and Anti-Inflammation Effects in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7841284. [PMID: 35815260 PMCID: PMC9259212 DOI: 10.1155/2022/7841284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Cisplatin, also known as cis-diamine dichloroplatinum (CDDP), is a widely used chemotherapeutic drug. However, its application is limited by the occurrence of serious nephrotoxicity. Currently, no effective therapy is available for combating CDDP-induced acute kidney injury (AKI). In the present study, we investigated the efficacy of Jianpi Yishen Tang (JPYST), a traditional Chinese medicine (TCM) compound commonly used to treat chronic kidney disease, against CDDP-induced AKI. In the CDDP + JPYST group, male mice were pretreated with JPYST (18.35 g/kg/day) for 5 consecutive days before receiving a single dose of CDDP (20 mg/kg), all mice were sacrificed 72 h after the CDDP injection. Results showed that JPYST suppressed CDDP-induced kidney dysfunction and tubular damage scores in the mice. Mechanistically, JPYST treatment attenuated CDDP-induced renal tubular cell apoptosis in AKI mice, as manifested by a marked decreased in TUNEL-positive cell counts, downregulation of the pro-apoptotic proteins Bax, Bad and caspase 3, and upregulation of the antiapoptotic protein Bcl-2 in kidney tissues. Meanwhile, JPYST decreased the expression of inflammatory cytokines TNF-α, IL-1β, and IL-6 in the serum and renal tissues of mice following CDDP administration. These factors are involved in suppressing the activation of phospho-NF-κB p65 in tubular epithelial cells. Taken together, these findings demonstrated that JPYST exerts renoprotective effects against CDDP-induced AKI through antiapoptosis and anti-inflammation effects, and these are associated with downregulation of NF-κB activation. Therefore, JPYST has potential for development of treatment therapies against CDDP-induced AKI.
Collapse
|
5
|
Li X, Liu C, Liang J, Zhou L, Li J, Chen H, Jiang T, Guan Y, Eng Khoo H. Antioxidative mechanisms and anticolitic potential of Desmodium styracifolium (Osb.) Merr. in DSS-induced colitic mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
6
|
Zhou F, Zou X, Zhang J, Wang Z, Yang Y, Wang D. Jian-Pi-Yi-Shen Formula Ameliorates Oxidative Stress, Inflammation, and Apoptosis by Activating the Nrf2 Signaling in 5/6 Nephrectomized Rats. Front Pharmacol 2021; 12:630210. [PMID: 33841151 PMCID: PMC8027107 DOI: 10.3389/fphar.2021.630210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing global public health problem, with high morbidity and mortality. Jian-Pi-Yi-Shen (JPYS) formula is a representative traditional Chinese medicine formula in the treatment of CKD, which is widely used in clinical practice in China. However, the underlying mechanism has not been well elucidated. In the present study, we measured the markers of apoptosis, inflammation, oxidative stress, and nuclear factor erythroid 2–related factor 2 (Nrf2) signaling to investigate the effects of JPYS formula on renal function and fibrosis and its molecular mechanism in an established animal model of 5/6 nephrectomized (5/6Nx) rats. The results demonstrated that the JPYS formula exerted a significant preventive effect on renal dysfunction and fibrosis, based on analysis of correlative parameters such as urinary protein, SCr, BUN, glomerular sclerosis index, and tubulointerstitial fibrosis score and renal histopathology and ultrastructural pathology of CKD rats. JPYS formula also induced downregulation of gene expression associated with fibrosis, such as TGF-β and type I, III, and IV collagen. Moreover, the JPYS formula showed a significant protective effect in suppressing cell apoptosis according to the results of apoptotic indexes, including increased gene expression of Bcl-2, decreased gene expression of Bax, caspase 3, caspase 9, and the number of TUNEL-positive cells. JPYS formula also ameliorated the activation of the NF-κB-mediated inflammatory pathway, as manifested by the downregulation of gene expression of TNF-α, IL-1β, IκBα, NF-κB p65, MCP-1, CXCL1, COX-2, and iNOS in the kidney. Our evidence also suggested that the JPYS formula ameliorates oxidative stress by promoting antioxidant function according to antioxidant index indicators as an indicator of GSH, SOD, CAT, and GPx and abating excessive accumulation of the reactive oxygen species biomarkers, including ROS, TBARS, 8-oxo-dG, and MDA. The data also suggested that the JPYS formula reversed the downregulation of HO-1 and Nrf2 level and upregulation of Keap1 expression. Together, our data highlighted that the JPYS formula relieved renal oxidative injury mediated by activation of Nrf2 signaling by inhibiting inflammation and apoptosis in CKD rats.
Collapse
Affiliation(s)
- Fanyuan Zhou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaohu Zou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ziwei Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Chinese Medicine, Southern Medical University, Shenzhen, China.,Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning, China.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
7
|
Wang F, Huang S, Chen Q, Hu Z, Li Z, Zheng P, Liu X, Li S, Zhang S, Chen J. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:915-929. [PMID: 32488993 DOI: 10.1002/pca.2963] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Jian-Pi-Yi-Shen pill (JPYSP) is a Chinese medicine formula developed for the treatment of anaemic patients with chronic kidney disease (CKD). OBJECTIVE To investigate the chemical profile of JPYSP in the treatment of renal anaemia. METHODS A method coupling ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) was established to characterise the chemical constituents present in JPYSP. Subsequently, a high-performance liquid chromatography method coupled with triple-quadrupole tandem mass spectrometry (HPLC-QQQ-MS/MS) was developed to quantify the major constituents from the identified compounds related to the treatment of CKD and anaemia. RESULTS A total of 71 compounds were tentatively identified from JPYSP, including saponins, flavonoids, sesquiterpenoids, coumarins, phenylpropanoids, anthranones, anthraquinones, tannins, phenolic acids and others. Amongst them, 12 compounds (i.e. astragaloside IV, calycosin, calycosin 7-O-glucoside, salvianolic acid A, rosmarinic acid, rhein, liquiritin, formononetin, atractylenolide I, dioscin, tanshinone IIA, and acteoside) were further quantified simultaneously by HPLC-QQQ-MS/MS. CONCLUSION The newly developed approach is suitable for the chemical profiling analysis and quality control of JPYSP, and could lead to additional pharmacodynamic studies involving the components of JPYSP.
Collapse
Affiliation(s)
- Fochang Wang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiugu Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhaoliu Hu
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhonggui Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ping Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinhui Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shangbin Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianping Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
8
|
Jian-Pi-Yi-Shen Regulates EPO and Iron Recycling Protein Expressions in Anemic Rats with Chronic Kidney Disease: Accumulation of Hypoxia Inducible Factor-2 α via ERK Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8894257. [PMID: 33178327 PMCID: PMC7647762 DOI: 10.1155/2020/8894257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Jian-Pi-Yi-Shen (JPYS), the traditional Chinese medicine (TCM) decoction, has been commonly used to treat chronic kidney disease (CKD) and its complications such as anemia. JPYS has been previously found to induce erythropoietin (EPO) production in HEK293T cells and CKD rats. However, the mechanism of JPYS in treating anemia of CKD rats has remained largely unknown. Here, we further extend our effort to investigate the translational control of hypoxia inducible factor- (HIF-) α protein via ERK signaling and the effect on iron recycling-related protein expression by JPYS, thus revealing the mechanism of JPYS in correcting anemia in CKD. Experimental CKD rats with anemia were induced by 5/6 nephrectomy. Rats were administrated orally with high dose (6.0 g/kg/d) and low dose (1.5 g/kg/d) of JPYS for 90 days. Serum hepcidin level was determined to evaluate iron homeostasis. The protein expressions of HIF-2α, erythropoietin (EPO), ferritin, and ferroportin (FPN) and the phosphorylation level of extracellular signal-regulated kinase 1/2 (ERK1/2) were detected by Western blot. The results showed that JPYS treatment significantly ameliorated kidney function by reducing increased levels of blood urea nitrogen (BUN), serum creatinine (Scr), and urine protein (UPRO). Periodic acid-Schiff (PAS) and Masson staining observation showed that the renal pathological damage was restored in JPYS-treated CKD rats. In parallel, JPYS markedly improved CKD anemia through upregulation of red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT). JPYS stimulated EPO and HIF-2α protein expressions in both the kidney and liver of CKD rats. Furthermore, JPYS induced the phosphorylation of ERK1/2 protein. In addition, JPYS regulated protein expression of ferritin and FPN in both the liver and spleen of CKD rats and the serum level of hepcidin. In conclusion, JPYS induces the expression of EPO through ERK-mediated HIF-2α protein accumulation and regulates systemic iron recycling, supporting its role in promoting erythropoiesis and improvement of anemia in CKD.
Collapse
|
9
|
Untargeted Metabolomics Reveals the Protective Effect of a Traditional Chinese Herbal Decoction on Cisplatin-Induced Acute Kidney Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8524132. [PMID: 33101449 PMCID: PMC7569447 DOI: 10.1155/2020/8524132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Our previous studies have demonstrated that Jian-Pi-Yi-Shen formula (JPYSF), a traditional Chinese herbal decoction, has a renoprotective effect in 5/6 nephrectomy-induced chronic kidney injury. However, the role and potential mechanisms of JPYSF in the treatment of acute kidney injury (AKI) remain unknown. This study was designed to test the beneficial effect of JPYSF in an AKI mouse model and to investigate the underlying mechanism by using metabolomics analysis. The AKI mouse model was induced by a single intraperitoneal injection of cisplatin at a dose of 20 mg/kg. The mice in the treatment group were pretreated orally with JPYSF (18.35 g/kg/d) for 5 days before cisplatin injection. Seventy-two hours after cisplatin injection, serum and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) was applied to analyze metabolic profiling variations in the kidney. The results showed that pretreatment with JPYSF obviously reduced the levels of serum creatinine and blood urea nitrogen and alleviated renal pathological injury in AKI mice. Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plot revealed a clear separation between the AKI and AKI + JPYSF group. A total of 68 and 87 significantly differentially expressed metabolites were identified in the kidney of AKI mice responding to JPYSF treatment in negative and positive ion mode, respectively. The pivotal pathways affected by JPYSF included vitamin B6 metabolism, alanine, aspartate and glutamate metabolism, lysine biosynthesis, and butanoate metabolism. In conclusion, JPYSF can protect the kidney from cisplatin-induced AKI, which may be associated with regulating renal metabolic disorders.
Collapse
|
10
|
Zheng L, Chen S, Wang F, Huang S, Liu X, Yang X, Zhou H, Zhao GP, Luo M, Li S, Chen J. Distinct Responses of Gut Microbiota to Jian-Pi-Yi-Shen Decoction Are Associated With Improved Clinical Outcomes in 5/6 Nephrectomized Rats. Front Pharmacol 2020; 11:604. [PMID: 32435197 PMCID: PMC7219274 DOI: 10.3389/fphar.2020.00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Gut dysbiosis contributes to the development and progression of chronic kidney disease (CKD) and its complications. However, the effect of drugs on the gut microbiota of CKD patients and its influence on treatment outcomes remains to be explored. Here, we assessed whether the response of gut microbiota to the traditional Chinese medicine Jian-Pi-Yi-Shen (JPYS) decoction differed from that to piperazine ferulate (PF), a kidney-targeted drug, by 16S rDNA sequencing, and whether the difference could be linked with drug-specific clinical outcomes. We showed that both JPYS and PF improved renal function, but only JPYS was able to restore the blood reticulocyte counting and serum calcium level in CKD rats. We also found that weighted UniFrac beta-diversity of the gut microbiome of the JPYS treated rats was significantly different from that of PF. Microbiome markers of drug-specific response were identified and subjected to correlation network analysis, together with clinical parameters and KEGG pathways. Among the microbiome markers of CKD, Corynebacterium was found to form a network hub that was closely correlated with the JPYS responder Enterococcus, suggesting a potential indirect impact of JPYS on Corynebacterium via interspecies interactions. We also identified two network hubs of the PF responder Blautia and the JPYS-only marker Coprococcus, which were connected with many genera and clinical parameters. They might serve as keystone taxa driving the response of gut microbiota to the drugs and influence host outcomes. Moreover, the JPYS-only marker Clostridium_XIVb was found to be connected to many pathways that are associated with CKD progression and might account for the improved outcomes in the JPYS treated rats. At last, the identified keystone markers of drug response were validated by qPCR for their differential abundance between CKD and the two drugs. Taken together, our study revealed that the responses of gut microbiota to JPYS were distinct from that to PF, and pinpointed drug-specific keystone microbiome markers closely correlated to clinical parameters, which could serve as candidate microbiome targets for further studies on their roles in medicating the drug efficacy of TCM in CKD.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuo Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xilan Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Guo-Ping Zhao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Jian-Pi-Yi-Shen Decoction Relieves Renal Anemia in 5/6 Nephrectomized Rats: Production of Erythropoietin via Hypoxia Inducible Factor Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2807926. [PMID: 30941190 PMCID: PMC6420977 DOI: 10.1155/2019/2807926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
Jian-Pi-Yi-Shen (JPYS) is one of the herbal medicines for treatment of anemic patients with chronic kidney disease (CKD). However, less of scientific evidence to support JPYS involved in treating anemia has been revealed. Here, an animal study was performed to investigate its hematopoietic activities and the underlying mechanism. The 5/6 nephrectomized inductions of CKD anemic rats were randomly divided into two groups: CKD group and JPYS group. Sham-operated rats served as sham group. JPYS (1.36 g/kg/d) was administered orally to CKD rats daily for six consecutive weeks. Results showed that JPYS treatment notably improved renal function and pathological injury in CKD rats. JPYS also restored the hematological parameters, including red blood cells, hemoglobin, and hematocrit. In parallel, the reduction level of EPO was reversed by JPYS. Furthermore, JPYS induced the accumulation of hypoxia inducible factor (HIF)-α protein expression. Collectively, these results provide convincing evidence for JPYS decoction in ameliorating CKD-associated anemia, and its mechanism might be related to regulate EPO production via HIF signaling pathway.
Collapse
|
12
|
Liu X, Chen J, Liu X, Wang D, Zheng P, Qi A, Yi T, Li S. Jian-Pi-Yi-Shen Formula ameliorates chronic kidney disease: involvement of mitochondrial quality control network. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:340. [PMID: 30572886 PMCID: PMC6302435 DOI: 10.1186/s12906-018-2395-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Jian-Pi-Yi-Shen Formula (JPYSF), a Chinese herbal decoction with the efficacies of 'fortify the spleen and tonify the kidney' and 'activate blood and resolve stasis', is effective for the treatment of chronic kidney disease in clinic. However, the underlying mechanism remains unclear. The aim of this study was to investigate the therapeutic effects and possible mechanisms of JPYSF on retarding chronic kidney disease progression in 5/6 nephrectomized (5/6 Nx) rats. METHODS Perindopril (4 mg/kg/d) and JPYSF (2.72 g/kg/d) were administrated by gavage to 5/6 Nx rats daily for 6 weeks. The therapeutic effects of JPYSF were evaluated by renal function, pathological injury, and fibrosis. The protein levels associated with mitochondrial quality control network were measured by Western blot and immunofluorescence analysis. RESULTS 5/6 Nx rats showed obvious decline in renal function as evidenced by increased serum creatinine, blood urea nitrogen, and urinary protein excretion, and significant injury in kidney structure as evidenced by glomerular hypertrophy, tubular atrophy, and interstitial fibrosis. Administration of JPYSF for 6 weeks could improve renal function and ameliorate kidney structure injury in 5/6 Nx rats. Furthermore, the remnant kidneys of 5/6 Nx rats showed unbalanced mitochondrial quality control network manifested as decreased mitochondrial biogenesis, fusion, and mitophagy, and increased mitochondrial fission. Treatment of JPYSF could restore aforesaid aspects of mitochondrial quality control network. CONCLUSIONS These results indicate that JPYSF can notably ameliorate 5/6 Nx-induced chronic kidney disease, which may be related with modulation of mitochondrial quality control network.
Collapse
|
13
|
Jian-Pi-Yi-Shen Formula Regulates Inflammatory Cytokines Production in 5/6 Nephrectomized Rats via Suppression of NF-κB Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7203547. [PMID: 30108662 PMCID: PMC6077543 DOI: 10.1155/2018/7203547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/09/2018] [Indexed: 12/04/2022]
Abstract
Jian-Pi-Yi-Shen formula (JPYSF) is a Chinese herbal decoction used for treating chronic kidney disease (CKD) for over 20 years with good efficiency. However, the mechanism lacks solid evidence. In the present study, we tested the hypothesis that JPYSF may retard CKD progression via inhibition of inflammation in 5/6 nephrectomy (5/6 Nx) rat model. The 5/6 Nx rats were randomly divided into 2 groups: 5/6 Nx group and JPYSF group. Sham-operated rats served as control. JPYSF (2.06 g/kg/d) were administrated by gavage to 5/6 Nx rats daily for 6 weeks. Results showed that JPYSF treatment significantly improved kidney function and pathological injury in 5/6 Nx rats. Multiplex analysis of cytokines revealed that JPYSF reduced proinflammatory cytokines and increased anti-inflammatory cytokine production. Furthermore, JPYSF inhibited the activation of nuclear factor-kappa B (NF-κB) signaling pathway. In conclusion, our data demonstrated that JPYSF remarkably retards development and progression of CKD in a 5/6 Nx rat model, which may be associated with inhibition of inflammation via NF-κB signaling pathway.
Collapse
|