1
|
Gungor H, Ekici M, Ates MB. Lipid-lowering, anti-inflammatory, and hepatoprotective effects of isorhamnetin on acetaminophen-induced hepatotoxicity in mice. Drug Chem Toxicol 2023; 46:566-574. [PMID: 35502492 DOI: 10.1080/01480545.2022.2069256] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Isorhamnetin is a hepatoprotective flavonoid molecule derived from the leaves and fruits of Hippophae rhamnoides L. However, the protective effect of isorhamnetin on acetaminophen (APAP) induced hepatotoxicity is still unknown. Thus, we aimed to investigate the lipid-lowering, anti-inflammatory, and hepatoprotective effects of isorhamnetin on APAP-induced hepatotoxicity in mice. Hepatotoxicity was induced by a single injection of APAP (300 mg/kg, intraperitoneally). Isorhamnetin (50 or 100 mg/kg, orally) and N-acetylcysteine (NAC) (200 mg/kg, orally), or vehicle control, were administered 1 h before the administration of APAP. Total antioxidant status (TAS) and total oxidative status (TOS) of liver tissue and levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were analyzed by ELISA. Lipid profiles and liver function parameters were measured using an autoanalyzer. In addition, liver tissue was examined histopathologically. Isorhamnetin treatment significantly reduced the APAP-induced increase in the liver weight and liver index; it also reduced the APAP-induced increase in serum liver parameters (ALT, AST, ALP, and LDH) (p < 0.05). Isorhamnetin significantly reduced APAP-induced oxidative stress and inflammation by increasing TAS levels and decreasing TOS, TNF-α, IL-1β, and IL-6 levels (p < 0.05). Moreover, isorhamnetin treatment significantly regulated lipid profiles (TG, T-C, LDL-C, and HDL-C levels) that changed in response to APAP administration (p < 0.05). In histopathological examination, liver degeneration observed in the APAP group was significantly reduced in the NAC and isorhamnetin-treated groups (p < 0.05). This study suggests that isorhamnetin has a significant protective effect on APAP-induced hepatotoxicity in mice through its lipid-lowering, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Huseyin Gungor
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mehmet Ekici
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mehmet Burak Ates
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Malakul W, Seenak P, Jumroon N, Arikit S, Kumphune S, Nernpermpisooth N. Novel Coconut Vinegar Attenuates Hepatic and Vascular Oxidative Stress in Rats Fed a High-Cholesterol Diet. Front Nutr 2022; 9:835278. [PMID: 35356733 PMCID: PMC8959456 DOI: 10.3389/fnut.2022.835278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Background Hypercholesterolemia is an independent modifiable risk factor that accelerates the development of both non-alcoholic fatty liver and atherosclerosis. Coconut water contains a variety of phytochemicals that make it appealing for producing vinegar. Coconut vinegar is rapidly gaining popularity for health benefits in Southeast Asia. The purpose of this study is to evaluate the effect of daily supplementation of coconut vinegar on hepatic and vascular oxidative stress in rats fed a high-cholesterol diet (HCD). Methods Mature coconut water was fermented with coconut sap sugar using Saccharomyces cerevisiae and Acetobacter aceti vat Europeans, respectively. Bioactive compounds and antioxidant capacity of coconut vinegar were examined in vitro. Adult male Sprague-Dawley rats were randomly divided into four groups; the control group fed a standard diet (S), a group that received HCD (SC), a group that received HCD supplemented with coconut vinegar at a dose of 1 mL/kg/day (SCV), and a group that received HCD with atorvastatin at a dose of 30 mg/kg/day (SCA). After 8 weeks, serum metabolic profiles, fatty liver, hepatic, and vascular oxidative stress were determined. Results In in vitro studies, coconut vinegar was rich in phenolic compounds and organic acids. The antioxidant capacity of 30 μL of coconut vinegar was 181.55 ± 8.15 μM Trolox equivalent antioxidant capacity (TEAC). In the HCD fed rats, daily supplementation of coconut vinegar reduced weight gain, serum triglycerides, and fasting blood sugar levels without renal or liver toxicity. In the liver, coconut vinegar reduced the accumulation of both hepatic cholesterol and hepatic triglyceride, and it also reduced hepatic 4-hydroxynonenal (4-HNE) lipid peroxidation. In the aortic tissues, coconut vinegar increased nitric oxide bioavailability and reduced aortic 4-HNE lipid peroxidation. Conclusion Novel coconut vinegar is the source of antioxidants, and daily supplementation of coconut vinegar was found to attenuate dyslipidemia-induced hepatic and vascular oxidative stress by protective against cellular lipid peroxidation.
Collapse
Affiliation(s)
- Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Noppadon Jumroon
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Harikrishnan R, Devi G, Van Doan H, Arockiaraj J, Jawahar S, Balasundaram C, Balamurugan P, Soltani M, Jaturasitha S. Influence of bamboo vinegar powder (BVP) enriched diet on antioxidant status, immunity level, and pro-anti-inflammatory cytokines modulation in Asian sea bass, Lates calcarifer (Bloch 1790) against Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2021; 119:462-477. [PMID: 34688863 DOI: 10.1016/j.fsi.2021.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Effect of bamboo vinegar powder (BVP) on growth, immunity, disease resistance, and immune-related gene expressions in juvenile Asian sea bass (barramundi), Lates calcarifer against Vibrio anguillarum was investigated. V. anguillarum infected fish fed by 2g BVP kg-1 diet exhibited significant growth, albumin (AB), serum total protein (TP), and globulin (GB) levels. Similarly, enhanced lysozyme (LZM), phagocytic (PC), anti-protease (AP), respiratory burst (RB), bactericidal (BC) activities and total immunoglobulin (Ig) levels were observed in fish fed 2g BVP kg-1. In addition, use of 2g BVP kg-1 in diet modulated several immune related gene expressions against Vibrio disease. This study exhibited a positive effect of dietary 2g BVP kg-1 diet on hemato-biochemical and immunological responses, which enhance the immunocompetence and health status of L. calcarifer against V. anguillarum infection.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Affiliated to University of Madras, Kanchipuram, 631 501, Tamil Nadu, India.
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Sundaram Jawahar
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Paramaraj Balamurugan
- Department of Biotechnology, St. Michael College of Engineering and Technology, Kalayarkoil, 630 551, Tamil Nadu, India
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, WA, Australia
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Shrestha N, Sleep SL, Cuffe JSM, Holland OJ, McAinch AJ, Dekker Nitert M, Hryciw DH. Pregnancy and diet-related changes in the maternal gut microbiota following exposure to an elevated linoleic acid diet. Am J Physiol Endocrinol Metab 2020; 318:E276-E285. [PMID: 31846371 DOI: 10.1152/ajpendo.00265.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. Changes in maternal gut microbiome have been implicated in the metabolic adaptions that occur during pregnancy. We aimed to investigate whether consumption of a diet with elevated LA altered fecal microbiome diversity before and during pregnancy. Female Wistar-Kyoto rats consumed a high-LA diet (HLA: 6.21% of energy) or a low-LA diet (LLA: 1.44% of energy) for 10 wk before mating and during pregnancy. DNA was isolated from fecal samples before pregnancy [embryonic day 0 (E0)], or during pregnancy at E10 and E20. The microbiome composition was assessed with 16S rRNA sequencing. At E0, the beta-diversity of LLA and HLA groups differed with HLA rats having significantly lower abundance of the genera Akkermansia, Peptococcus, Sutterella, and Xo2d06 but higher abundance of Butyricimonas and Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha-diversity and an increase in beta-diversity. In the LLA group, the abundance of Akkermansia, Blautia, rc4.4, and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA group; only the abundance of Butyricimonas decreased. At E20, there were no differences in alpha- and beta-diversity, and the abundance of Roseburia was significantly increased in the HLA group. In conclusion, consumption of a HLA diet alters gut microbiota composition, as does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does not alter gut microbiota composition.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Simone L Sleep
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - James S M Cuffe
- School of Medical Science, Griffith University, Southport, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
5
|
Dong S, Ji J, Hu L, Wang H. Dihydromyricetin alleviates acetaminophen-induced liver injury via the regulation of transformation, lipid homeostasis, cell death and regeneration. Life Sci 2019; 227:20-29. [PMID: 30974116 DOI: 10.1016/j.lfs.2019.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/01/2019] [Accepted: 04/07/2019] [Indexed: 12/26/2022]
Abstract
AIMS We previously reported that Hovenia dulcis Thunb. extract, a traditional Chinese medicine rich in dihydromyricetin (DHM), exhibited a significant hepatoprotective effect against acetaminophen (APAP)-induced liver injury. However, whether DHM plays a protective role in APAP hepatotoxicity and what mechanisms are involved remain unclear. In this study, we evaluated the hepatoprotective effects of DHM against APAP-induced liver injury. MAIN METHODS Male C57BL/6 mice were used for the experiment. LC-MS, q-PCR, immunochemistry and western blot analysis were employed to mechanism analysis. KEY FINDINGS DHM exhibited a protective effect against APAP-induced liver injury. Further mechanistic investigations revealed that the protective effect of DHM against APAP hepatotoxicity had multi-target and multi-pathway characteristics involving APAP metabolism, lipid regulation, and hepatocyte death and regeneration. DHM pretreatment resulted in cytochrome P450 2E1 inhibition and UDP-glucuronosyltransferase 1A1 activation, affecting APAP biotransformation. Moreover, DHM pretreatment significantly ameliorated lipid dysregulation via peroxisome proliferator-activated receptor and sterol regulatory element-binding protein-1c (SREBP-1c) signalling pathways. Furthermore, DHM regulated the expression of cell death- and liver regeneration-associated proteins. SIGNIFICANCE These results suggested that DHM alleviated APAP-induced liver injury in mice by inhibiting hepatocyte death, promoting p53-related regeneration, and regulating lipid homeostatic imbalance and APAP transformation. Based on these findings, DHM provides a potential and novel approach for preventing and treating APAP-induced liver damage, and SREBP-1c signalling might be a new therapeutic target for APAP hepatotoxicity.
Collapse
Affiliation(s)
- Sijing Dong
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lingyun Hu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|