1
|
Sun Y, Zhong M, Wang J, Feng M, Shen C, Han Z, Cao X, Zhang Q. Cordycepin extends the longevity of Caenorhabditis elegans via antioxidation and regulation of fatty acid metabolism. Eur J Pharmacol 2025; 994:177388. [PMID: 39971228 DOI: 10.1016/j.ejphar.2025.177388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Aging can cause age-related diseases such as cancer, cardiovascular and neurodegenerative diseases. Cordycepin exerts anti-oxidation, anti-inflammatory and neuroprotective effects. However, the anti-aging effect of cordycepin is still unclear. This study aimed to investigate the anti-aging effect of cordycepin and unravel the underlying mechanism. Cordycepin prolonged the lifespan of C. elegans under normal and heat stress conditions, without effects on the normal growth and reproduction of C. elegans. Cordycepin also improved the locomotion ability, inhibited the deposition of aging pigment lipofuscin and alleviated the oxidative stress damage by decreasing the excessive accumulation of ROS and raising the antioxidant enzyme activities in C. elegans. The metabolomics study showed that cordycepin changed 19 metabolites including citric acid, linoleic acid, oleic acid, glutamic acid, pyruvic acid and so on. Transcriptomics study revealed that cordycepin up-regulated the gene expression of acox-1.2, acox-1.3, acox-1.4, acs-1, acs-15, acdh-1, acdh-4 and acdh-8 in C. elegans, suggesting that cordycepin prolonged its lifespan via regulating fatty acid degradation, fatty acid metabolism and so on. In summary, the current study demonstrated that cordycepin exerted the anti-aging effect on C. elegans by improving the antioxidant system and regulating the genes involved in fatty acid metabolism to inhibit the accumulation of linoleic acid and oleic acid. Therefore, cordycepin might be a promising agent for aging and age-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., 71 Nanguang Road, Luzhou, 646000, People's Republic of China
| | - Zhipeng Han
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaonian Cao
- Luzhou Laojiao Co., Ltd., 71 Nanguang Road, Luzhou, 646000, People's Republic of China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
2
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
3
|
Sayed SMA, Siems K, Schmitz-Linneweber C, Luyten W, Saul N. Enhanced Healthspan in Caenorhabditis elegans Treated With Extracts From the Traditional Chinese Medicine Plants Cuscuta chinensis Lam. and Eucommia ulmoides Oliv. Front Pharmacol 2021; 12:604435. [PMID: 33633573 PMCID: PMC7901915 DOI: 10.3389/fphar.2021.604435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
To uncover potential anti-aging capacities of Traditional Chinese Medicine (TCM), the nematode Caenorhabditis elegans was used to investigate the effects of Eucommia ulmoides and Cuscuta chinensis extracts, selected by screening seven TCM extracts, on different healthspan parameters. Nematodes exposed to E. ulmoides and C. chinensis extracts, starting at the young adult stage, exhibited prolonged lifespan and increased survival after heat stress as well as upon exposure to the pathogenic bacterium Photorhabdus luminescens, whereby the survival benefits were monitored after stress initiation at different adult stages. However, only C. chinensis had the ability to enhance physical fitness: the swimming behavior and the pharyngeal pumping rate of C. elegans were improved at day 7 and especially at day 12 of adulthood. Finally, monitoring the red fluorescence of aged worms revealed that only C. chinensis extracts caused suppression of intestinal autofluorescence, a known marker of aging. The results underline the different modes of action of the tested plants extracts. E. ulmoides improved specifically the physiological fitness by increasing the survival probability of C. elegans after stress, while C. chinensis seems to be an overall healthspan enhancer, reflected in the suppressed autofluorescence, with beneficial effects on physical as well as physiological fitness. The C. chinensis effects may be hormetic: this is supported by increased gene expression of hsp-16.1 and by trend, also of hsp-12.6.
Collapse
Affiliation(s)
- Shimaa M. A. Sayed
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
- Botany and Microbiology Department, Faculty of Science, New Valley University, El-Kharga, Egypt
| | | | - Christian Schmitz-Linneweber
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | | | - Nadine Saul
- Molecular Genetics Group, Institute of Biology, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|