1
|
Madivoli ES, Kisato J, Kimani PK, Kamau K. Evaluation of the Food Barrier and Mechanical Properties of Carrageenan-Starch Composite Films. Food Sci Nutr 2025; 13:e4664. [PMID: 39803257 PMCID: PMC11717021 DOI: 10.1002/fsn3.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Single use plastics are a leading source of microplastics that have been detected along the food chain. This study evaluated the potential of starch (ST) and carrageenan (CRG) in packaging film formulation. CRG isolated from the seaweed (SW) Eucheuma denticulatam was blended with starch and cast to obtain films whose moisture content (MC), total soluble matter (TSM), degree of solubility (DS), water vapor permeability (WVP), opacity (O), contact angles (CA), moisture absorption (MA), and percent elongation (PE) were evaluated. The films' morphology, crystallinity, opacity, thermal profile, and functional groups were then studied by scanning electron microscopy, powder diffraction, UV-Vis, thermal gravimetry, and infrared spectroscopy. From the results obtained, the SWF films exhibited a higher MC, DS, and TSM than CRG and CRG-ST films but lower DC values. The PE of CRG films was lower than that of SWF (30%) though incorporation of ST increased the PE of CRG-ST. However, SWF films had WVP of 2.25 × 10-7 gs-1m-1Pa-1, compared to 3.65 × 10-7 gs-1m-1Pa-1 of CRG, 2.73 × 10-7 gs-1m-1Pa-1 of CRG-ST and a moisture absorption of 29.29 ± 3.5 as compared to 17.29 ± 0.87 of CRG and 23.80% ± 4.12% of CRG-ST. The opacities were found to be 41.02, 79.89, and 42.23 for SWF, CRG, CRG-ST while the contact angles were found to be 72.86, 80.93, 65.57 for SWF, CRG, and CRG-ST, respectively. Moreover, the films were impermeable to vegetable oil, had carbohydrate functional groups, good thermal stabilities, and trace micronutrients. In conclusion, this study formulated packaging films with enhanced food barrier and mechanical properties that can potentially replace single use packaging films.
Collapse
Affiliation(s)
- E. S. Madivoli
- Department of ChemistryJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
- Department of Physics and BiophysicsUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - J. Kisato
- Department of Fashion and DesignKenyatta UniversityNairobiKenya
| | - P. K. Kimani
- Department of Engineering Science, Graduate School of EngineeringGifu UniversityGifuJapan
| | - K Kamau
- Department of ChemistryJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
- Department of Physics and BiophysicsUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
2
|
Mohammed AE, Aldahasi RM, Rahman I, Shami A, Alotaibi M, BinShabaib MS, ALHarthi SS, Aabed K. The antimicrobial activity of tea tree oil ( Melaleuca alternifolia) and its metal nanoparticles in oral bacteria. PeerJ 2024; 12:e17241. [PMID: 38854801 PMCID: PMC11162611 DOI: 10.7717/peerj.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham M. Aldahasi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munerah S. BinShabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shatha S. ALHarthi
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Rammal M, Khreiss S, Badran A, Mezher M, Bechelany M, Haidar C, Khalil MI, Baydoun E, El-Dakdouki MH. Antibacterial and Antifungal Activities of Cimbopogon winterianus and Origanum syriacum Extracts and Essential Oils against Uropathogenic Bacteria and Foodborne Fungal Isolates. Foods 2024; 13:1684. [PMID: 38890913 PMCID: PMC11171924 DOI: 10.3390/foods13111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
This study focused on testing the antibacterial and antifungal activity of Origanum syriacum (O. syriacum) and Cimbopogon winterianus (C. winterianus) extracts and their essential oils (EOs). The bacteria were isolated from urine samples and identified by a VITEK assay, and the fungi were isolated from spoiled food samples and further identified by MALDI-TOF. The susceptibility of the microbial isolates was assessed by determining the bacteriostatic and bactericidal/fungicidal effects by the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) broth microdilution assay and time-kill test. The antibiofilm activities were assessed by the antibiofilm screening assays. The bacterial isolates included three Gram-negative isolates (Escherichia coli, Klebsiella pneumonia, and Citrobacter freundii) and two Gram-positive isolates (Staphylococcus aureus and Streptococcus intermedius). The fungal isolates included Candida albicans and Aspergillus niger. The O. syriacum and C. winterianus extracts exhibited bacteriostatic and fungistatic activities (MIC 1.25-2.5 mg/mL for the bacterial isolates and 2.5-5 mg/mL for the fungal isolates). However, their EOs exhibited bactericidal (MBC 5-20%) and fungicidal (MFC 1.25-10%) activities, meaning that the EOs had a better antimicrobial potential than the extracts. The antibiofilm activities of the mentioned extracts and their EOs were relatively weak. The O. syriacum extract inhibited S. aureus, S. intermedius, and K. pneumonia biofilms at a concentration of 0.3125 mg/mL and C. albicans and A. niger biofilms at 0.625 mg/mL. No antibiofilm activity was recorded for C. winterianus extract. In addition, the packaging of grapes with C. winterianus extract preserved them for about 40 days. The results reflect the significant antimicrobial activity of O. syriacum and C. winterianus extracts and their EOs, thus suggesting their potential in food packaging and preservation.
Collapse
Affiliation(s)
- Marwa Rammal
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Salam Khreiss
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O Box 961343, Jordan;
| | - Malak Mezher
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon; (M.M.); or (M.I.K.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, Université de Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Place Eugene Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Chaden Haidar
- Department of Food Sciences and Technology, Faculty of Agronomy, Lebanese University, Beirut P.O. Box 146404, Lebanon; (M.R.); (S.K.); (C.H.)
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, P.O. Box 11-5020, Beirut 11072809, Lebanon; (M.M.); or (M.I.K.)
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut 11072020, Lebanon;
| | - Mohammad H. El-Dakdouki
- Department of Chemistry, Faculty of Science, Beirut Arab University, Riad El Solh, P.O. Box 11-5020, Beirut 11072809, Lebanon
| |
Collapse
|
4
|
Abrar A, Zafar A, Fatima M, Muntaqua D, Naz I, Fatima H, Ul Haq I. Mechanistic insight into the synergistic antimicrobial potential of Fagonia indica Burm.f. extracts with cefixime. Saudi Pharm J 2024; 32:101893. [PMID: 38204592 PMCID: PMC10777119 DOI: 10.1016/j.jsps.2023.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024] Open
Abstract
Fagonia indica Burm.f. is known for its anti-infective character and has been studied in the present work as a synergistic remedy against resistant bacterial strains. Initially, phytochemicals were quantified in n-Hexane (n-Hex), ethyl acetate (E.A), methanol (MeOH), and aqueous (Aq.) extracts by Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis. Later, after establishing an antibacterial resistance profile for extracts and antibiotics against gram-positive and gram-negative strains, synergism was evaluated in combination with cefixime through time-kill kinetics and bacterial protein estimation studies. Topographic images depicting synergism were obtained by scanning electron microscopy for Methicilin-resistant Staphylococcus aureus (MRSA) and Resistant Escherichia coli (R.E. coli). Results showed the presence of maximum phenolic (28.4 ± 0.67 μg GAE/mg extract) and flavonoid (11 ± 0.42 μg QE/mg extract) contents in MeOH extract. RP-HPLC results also displayed maximum polyphenols in MeOH extract followed by E.A extract. Clinical strains were resistant to cefixime whereas these were moderately inhibited by all extracts (MIC 150-300 µg/ml) except Aq. extract. E.A and n-Hex extracts demonstrated maximum synergism (Fractional inhibitory concentration index (FICI) 0.31) against R.E. coli. The n-Hex extract displayed total synergism against R.P. a with a 4-fold reduction in cefixime dose. Time-kill kinetics showed maximum inhibition of gram-negative bacterial growth from 3 to 12 h when treated at FICI and 2FICI values with > 10-fold reduction of the extracts' dose. All combinations demonstrate > 70 % protein content inhibition with bacterial cell wall disruption in SEM images. Fortunately, FICI concentrations have low hemolytic potential (<5%). Conclusively, F. indica extracts can mitigate antimicrobial resistance against cefixime and can be investigated in detail by in vivo and mechanistic studies.
Collapse
Affiliation(s)
- Anum Abrar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mahvish Fatima
- Department of Physics, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Durdana Muntaqua
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
5
|
Zafar A, Wasti Y, Majid M, Muntaqua D, Bungau SG, Haq IU. Artemisia brevifolia Wall. Ex DC Enhances Cefixime Susceptibility by Reforming Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1553. [PMID: 37887253 PMCID: PMC10604168 DOI: 10.3390/antibiotics12101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
(1) Background: A possible solution to antimicrobial resistance (AMR) is synergism with plants like Artemisia brevifolia Wall. ex DC. (2) Methods: Phytochemical quantification of extracts (n-hexane (NH), ethyl acetate (EA), methanol (M), and aqueous (Aq)) was performed using RP-HPLC and chromogenic assays. Extracts were screened against resistant clinical isolates via disc diffusion, broth dilution, the checkerboard method, time-kill, and protein quantification assays. (3) Results: M extract had the maximum phenolic (15.98 ± 0.1 μg GAE/mgE) and flavonoid contents (9.93 ± 0.5 μg QE/mgE). RP-HPLC displayed the maximum polyphenols in the M extract. Secondary metabolite determination showed M extract to have the highest glycosides, alkaloids, and tannins. Preliminary resistance profiling indicated that selected isolates were resistant to cefixime (MIC 20-40 µg/mL). Extracts showed moderate antibacterial activity (MIC 60-100 µg/mL). The checkerboard method revealed a total synergy between EA extract and cefixime with 10-fold reductions in cefixime dose against resistant P. aeruginosa and MRSA. Moreover, A. brevifolia extracts potentiated the antibacterial effect of cefixime after 6 and 9 h. The synergistic combination was non- to slightly hemolytic and could inhibit bacterial protein in addition to cefixime disrupting the cell wall, thus making it difficult for bacteria to survive. (4) Conclusion: A. brevifolia in combination with cefixime has the potential to inhibit AMR.
Collapse
Affiliation(s)
- Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
- Cadson College of Pharmacy, Kharian 50090, Pakistan
| | - Yusra Wasti
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad 45550, Pakistan;
| | - Durdana Muntaqua
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Ihsan ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.Z.); (Y.W.)
| |
Collapse
|
6
|
Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi J Biol Sci 2023; 30:103576. [PMID: 36874198 PMCID: PMC9975697 DOI: 10.1016/j.sjbs.2023.103576] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023] Open
Abstract
Emergence of antimicrobial resistance complicates treatment of infections by antibiotics. This has driven research on novel and combination antibacterial therapies. The present study evaluated synergistic antimicrobial activity of plant extracts and cefixime in resistant clinical isolates. Preliminary susceptibility profiling of antibiotics and antibacterial activity of extracts was done by disc diffusion and microbroth dilution assays. Checker-board, time-kill kinetics and protein content studies were performed to validate synergistic antibacterial activity. Results showed noteworthy quantities of gallic acid (0.24-19.7 µg/mg), quercetin (1.57-18.44 µg/mg) and cinnamic acid (0.02-5.93 µg/mg) in extracts of plants assessed by reverse-phase high performance liquid chromatography (RP-HPLC). Gram-positive (4/6) and Gram-negative (13/16) clinical isolates were intermediately susceptible or resistant to cefixime, which was used for synergistic studies. EA and M extracts of plants exhibited total synergy, partial synergy and indifferent characteristics whereas aqueous extracts did not show synergistic patterns. Time-kill kinetic studies showed that synergism was both time and concentration-dependent (2-8-fold decrease in concentration). Bacterial isolates treated with combinations at fractional inhibitory concentration index (FICI) showed significantly reduced bacterial growth, as well as protein content (5-62 %) as compared to extracts/cefixime alone treated isolates. This study acknowledges the selected crude extracts as adjuvants to antibiotics to treat resistant bacterial infections.
Collapse
|
7
|
Ali N, Naz I, Ahmed S, Mohsin SA, Kanwal N, Fatima H, Hussain S. Polarity-guided phytochemical extraction, polyphenolic characterization, and multimode biological evaluation of Seriphidium kurramense (Qazilb.) Y. R. Ling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|