1
|
Trivadila T, Iswantini D, Rahminiwati M, Rafi M, Salsabila AP, Sianipar RNR, Indariani S, Murni A. Herbal Immunostimulants and Their Phytochemicals: Exploring Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri. PLANTS (BASEL, SWITZERLAND) 2025; 14:897. [PMID: 40265854 PMCID: PMC11945065 DOI: 10.3390/plants14060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
The rising prevalence of infectious diseases and immune-related disorders underscores the need for effective and accessible therapeutic solutions. Herbal immunostimulants derived from medicinal plants offer promising alternatives, enhancing immune responses with lower toxicity and fewer side effects than synthetic drugs. This review explores the immunostimulatory potential of Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri, focusing on their bioactive compounds, mechanisms of action, and therapeutic relevance. These plants modulate innate and adaptive immune responses by activating macrophages, dendritic cells, and lymphocytes while regulating cytokine production to maintain immune homeostasis. Their immunomodulatory effects are linked to key signaling pathways, including NF-κB, MAPK, and JAK/STAT. In vitro and in vivo studies highlight their potential to strengthen immune responses and control inflammation, making them promising candidates for managing infectious and immune-related diseases. However, further research is needed to standardize formulations, determine optimal dosages, and validate safety and efficacy in clinical settings. Addressing these gaps will support the integration of herbal immunostimulants into evidence-based healthcare as sustainable and accessible immune-enhancing strategies.
Collapse
Affiliation(s)
- Trivadila Trivadila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Dyah Iswantini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Min Rahminiwati
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, West Java, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Adisa Putri Salsabila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Rut Novalia Rahmawati Sianipar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Susi Indariani
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| |
Collapse
|
2
|
Hou S, Ma D, Wu S, Hui Q, Hao Z. Morinda citrifolia L.: A Comprehensive Review on Phytochemistry, Pharmacological Effects, and Antioxidant Potential. Antioxidants (Basel) 2025; 14:295. [PMID: 40227265 PMCID: PMC11939675 DOI: 10.3390/antiox14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Morinda citrifolia L. (M. citrifolia), commonly referred to as noni, a Polynesian medicinal plant with over 2000 years of traditional use, has garnered global interest for its rich repertoire of antioxidant phytochemicals, including flavonoids (kaempferol, rutin), iridoids (aucubin, asperulosidic acid, deacetylasperulosidic acid, asperuloside), polysaccharides (nonioside A), and coumarins (scopoletin). This comprehensive review synthesizes recent advances (2018-2023) on noni's bioactive constituents, pharmacological properties, and molecular mechanisms, with a focus on its antioxidant potential. Systematic analyses reveal that noni-derived compounds exhibit potent free radical scavenging capacity (e.g., 2,2-Diphenyl-1-picrylhydrazyl/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) (DPPH/ABTS) inhibition), upregulate endogenous antioxidant enzymes (Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPx)), and modulate key pathways such as Nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) and Nuclear Factor kappa-B (NF-κB). Notably, polysaccharides and iridoids demonstrate dual antioxidant and anti-inflammatory effects via gut microbiota regulation. This highlights the plant's potential for innovation in the medical and pharmaceutical fields. However, it is also recognized that further research is needed to clarify its mechanisms of action and ensure its safety for widespread application. We emphasize the need for mechanistic studies to bridge traditional knowledge with modern applications, particularly in developing antioxidant-rich nutraceuticals and sustainable livestock feed additives. This review underscores noni's role as a multi-target antioxidant agent and provides a roadmap for future research to optimize its health benefits.
Collapse
Affiliation(s)
- Silu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Danyang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaofeng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiaoyue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
Jang J, He Z, Huang L, Hwang JY, Kim MY, Cho JY. Upregulation of NK cell activity, cytokine expression, and NF-κB pathway by ginsenoside concentrates from Panax ginseng berries in healthy mice and macrophage cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118681. [PMID: 39121929 DOI: 10.1016/j.jep.2024.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C.A. Meyer. Has been studied for decades for its various biological activities, especially in terms of immune-regulatory properties. Traditionally, it has been known that root, leaves, and fruits of P. ginseng were eaten for improving body's Qi and homeostasis. Also, these were used to protect body from various types of infectious diseases. However, molecular mechanisms of immunomodulatory activities of ginseng berries have not been systemically studied as often as other parts of the plant. AIM OF THE STUDY The aim of this research is to discover the regulatory effects of P. ginseng berries, more importantly, their ginsenosides, on innate immune responses and to elucidate the molecular mechanism. MATERIALS AND METHODS Ginseng berry concentrate (GBC) was orally injected into BALB/c mice for 30 days, and spleens were extracted for evaluation of immune-regulatory effects. Murine macrophage RAW264.7 cells were used for detailed molecular mechanism studies. Splenic natural killer (NK) cells were isolated using the magnetic-activated cell sorting (MACS) system, and the cytotoxic activity of isolated NK cells was measured using a lactate dehydrogenase (LDH) release assay. The splenic immune cell population was determined by flow-cytometry. NF-κB promoter activity was assessed by in vitro luciferase assay. Expression of inflammatory proteins and cytokines of the spleen and RAW264.7 cells were evaluated using western blotting and real-time PCR, respectively. RESULTS The GBC enhanced cytotoxic activity of NK cells and the immune-regulation-related splenic cell population. Moreover, GBC promoted NF-κB promoter activity and stimulated the NF-κB signaling cascade. In spleen and RAW264.7 cells, expression of pro-inflammatory cytokines was increased upon GBC application, while expression of anti-inflammatory cytokines decreased. CONCLUSIONS These results suggest that P. ginseng berry can stimulate innate immune responses and help maintain a balanced immune condition, mostly due to the action of its key ginsenoside Re, along with other protopanaxadiol- and protopanaxatriol-type ginsenosides. Such finding will provide a new insight into the field of well-being diet research as well as non-chemical immune modulator, by providing nature-derived and plant-based bioactive materials.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ziliang He
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Yeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Seidel V, Prasher P, Sharma M, Fatima R, Arslan Ateşşahin D, Calina D, Sharifi-Rad J. Anticancer and chemopreventive potential of Morinda citrifolia L. bioactive compounds: A comprehensive update. Phytother Res 2024; 38:1932-1950. [PMID: 38358681 DOI: 10.1002/ptr.8137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/06/2024] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Morinda citrifolia L., commonly known as Noni, has a longstanding history in traditional medicine for treating various diseases. Recently, there has been an increased focus on exploring Noni extracts and phytoconstituents, particularly for their effectiveness against cancers such as lung, esophageal, liver, and breast cancer, and their potential in cancer chemoprevention. This study aims to provide a comprehensive review of in vitro and in vivo studies assessing Noni's impact on cancer, alongside an exploration of its bioactive compounds. A systematic review was conducted, encompassing a wide range of scientific databases to gather pertinent literature. This review focused on in vitro and in vivo studies, as well as clinical trials that explore the effects of Noni fruit and its phytoconstituents-including anthraquinones, flavonoids, sugar derivatives, and neolignans-on cancer. The search was meticulously structured around specific keywords and criteria to ensure a thorough analysis. The compiled studies highlight Noni's multifaceted role in cancer therapy, showcasing its various bioactive components and their modes of action. This includes mechanisms such as apoptosis induction, cell cycle arrest, antiangiogenesis, and immune system modulation, demonstrating significant anticancer and chemopreventive potential. The findings reinforce Noni's potential as a safe and effective option in cancer prevention and treatment. This review underscores the need for further research into Noni's anticancer properties, with the hope of stimulating additional studies and clinical trials to validate and expand upon these promising findings.
Collapse
Affiliation(s)
- Dusanka Kitic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Nis, Serbia
| | - Bojana Miladinovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Nis, Serbia
| | - Milica Randjelovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Nis, Serbia
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Rabab Fatima
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | |
Collapse
|