1
|
Xu C, Yi M, Xiao Z, Xiang F, Wu M, Zhang Z, Zheng Y, Gong Y, Li Y, Su L, Liao Y, Zhang P, Xia B, Liao D, Lin L. New idea of Fuke Qianjin capsule in treating sequelae of pelvic inflammatory disease: Anti-inflammatory in the early stage and reparative in the later stage. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119066. [PMID: 39528116 DOI: 10.1016/j.jep.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sequelae of pelvic inflammatory disease (SPID) occurs in female internal genitalia and surrounding connective tissue. Recent clinical studies have shown that the traditional Chinese medicine Fuke Qianjin capsule (FKQ) can shorten the course of this disease, but its pharmacological effects and potential mechanism have not been fully elucidated. AIM OF THE STUDY This study aimed to investigate the efficacy and underlying mechanisms of FKQ in the treatment of SPID. METHODS In this study, we first established a mixed infection model to explore the protective effect of FKQ on common pathogens of SPID. Afterwards, mixed bacterial infection and mechanical injury were used in a SPID rat model to explore the protective mechanism of FKQ on SPID rats. Inflammation, repair and immune cells were tested. RESULTS FKQ has a protective effect against infections caused by SPID pathogenic bacterial and may reduce mortality from mixed infections. In the SPID model, FKQ improved pathological damage to the uterus, reduced the area of uterine fibrosis, and inhibited the levels of cytokines (TNF-α, IL-6, IL-1β, IL-18, TGF-β1 and VEGF) caused by pathogenic bacteria. Moreover, FKQ treatment reduced the accumulation of NLRP3, Caspase-1, GSDMD Vimentin, and Cytokeratin 18 in the uterus and suppressed the expression of TGF-β1 and VEGF in the fallopian tubes, thereby reducing inflammation and promoting mucosal repair. In addition, FKQ can restore the immune function balance of SPID rats by increasing the proportion of Treg cells in the spleen and thymus in a rat model of SPID, reducing the proportion of Th17 lymphocytes, and promoting an immunological balance of Treg/Th17 cells, thereby regulating the immune system of the body. CONCLUSION In summary, FKQ treatment for SPID is the result of a fourfold combination of antibacterial, anti-inflammatory, reparative and immune-enhancing activities.
Collapse
Affiliation(s)
- Chunfang Xu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Meijin Yi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhikui Xiao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Mengyao Wu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yuanqing Zheng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Liang Su
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Yingyan Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, 412003, China.
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Shi T, Hou C, Duan Y, Li Y, Liu W, Huang P, Zhou Y, Yu S, Song L. Mechanism of Smilax china L. in the treatment of intrauterine adhesions based on network pharmacology, molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:150. [PMID: 38580999 PMCID: PMC10996135 DOI: 10.1186/s12906-024-04414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Smilax china L. (SCL) is a traditional herbal medicine for the potential treatment of intrauterine adhesion (IUA). However, the mechanisms of action have not yet been determined. In this study, we explored the effects and mechanisms of SCL in IUA by network pharmacology, molecular docking and molecular biology experiments. METHODS Active ingredients and targets of SCL were acquired from TCMSP and SwissTargetPrediction. IUA-related targets were collected from the GeneCards, DisGeNET, OMIM and TTD databases. A protein‒protein interaction (PPI) network was constructed by Cytoscape 3.9.1 and analysed with CytoHubba and CytoNCA to identify the core targets. The DAVID tool was used for GO and KEGG enrichment analyses. Furthermore, molecular docking was employed to assess the interaction between the compounds and key targets. Finally, the mechanisms and targets of SCL in IUA were verified by cellular experiments and western blot. RESULTS A total of 196 targets of SCL were identified, among which 93 were related to IUA. Topological and KEGG analyses results identified 15 core targets that were involved in multiple pathways, such as inflammation, apoptosis, and PI3K/AKT signalling pathways. Molecular docking results showed that the active compounds had good binding to the core targets. In vitro experiments showed that astilbin (AST), a major component of SCL, significantly reduced TGF-β-induced overexpression of fibronectin (FN), activation of the PI3K/AKT signalling pathway and the expression of downstream factors (NF-κB and BCL2) in human endometrial stromal cells, suggesting that AST ameliorates IUA by mediating the PI3K/AKT/NF-κB and BCL2 proteins. CONCLUSIONS AST, a major component of SCL, may be a potential therapeutic agent for IUA. Moreover, its mechanism is strongly associated with regulation of the PI3K/AKT signalling pathway and the downstream NF-κB and BCL2 proteins. This study will provide new strategies that utilize AST for the treatment of IUA.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Chuqi Hou
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongzhen Duan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Yuliang Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Wenqin Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peixian Huang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Yuhua Zhou
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China.
| | - Luyao Song
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, #253 Industrial Avenue Zhong, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|