1
|
Gao S, An Z, Zhang Q, Sun Q, Huang Q, Shi L, Liu W, Gou X, Li Y, Xin X, Feng Q. Danggui-Shaoyao-San protects against non-alcoholic steatohepatitis via modulation of hepatic APP protein, Lysosomal CTSB release, and NF-κB activation. Heliyon 2024; 10:e34213. [PMID: 39114010 PMCID: PMC11305236 DOI: 10.1016/j.heliyon.2024.e34213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH), an escalating global health concern, is a primary factor behind cirrhosis, liver transplantation, and hepatocellular carcinoma. Effective treatments remain elusive. Danggui-Shaoyao-San (DGSY), a classic famous prescription employed in treating NASH, could hold promise, although its molecular underpinnings are still under investigation. This study undertakes an exploration of the impacts of DGSY on NASH and seeks to illuminate the mechanisms at play. Methods UHPLC-Q-Orbitrap HRMS was employed to identify compounds within DGSY. Mice underwent a 25-week regimen of HFHC diet and high-sugar water, with 4 weeks of DGSY treatment for efficacy and pathogenic mechanism exploration in vivo. L02 cells were cultured with 0.2 mM FFA for 24 h, exposed to DGSY at 1 mg/ml and 2 mg/ml for efficacy and pathogenic mechanism exploration in vitro. Using online databases, we sought potential targets for NASH treatment, and through PPI networks, identified key targets. Expression levels of genes and proteins were examined by western blotting, RT-PCR, and immunofluorescence staining. Results Thirty-four compounds were identified within DGSY. DGSY brought about marked reductions in biochemical indicators and yielded significant improvements in NASH mice histological features. Additionally, it mitigated hepatic steatosis and inflammation both in vivo and in vitro. The top 10 targets from two network pharmacology analyses, one focusing on structural prediction and the other on literature mining, identified APOE and APP as potential therapeutic targets for DGSY in NASH treatment. PCR validation confirmed that DGSY reduced APP expression after treatment, and further investigation revealed that DGSY significantly suppressed hepatic APP and Aβ expression, indicating its effectiveness in treating NASH. Furthermore, it inhibited Aβ-induced Cathepsin B lysosomal release, reducing hepatic inflammation. Conclusion Danggui-Shaoyao-San has anti-steatohepatitis effects in ameliorating hepatic APP protein expression, reducing hepatic lysosomal CTSB release, and suppressing hepatic NF-κB activation. The study provided a more theoretical basis for the future clinical application of DGSY.
Collapse
Affiliation(s)
- Siting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Zhang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinmei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Shi
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Yajuan Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
2
|
Li G, Cheng J, Yang L, Chen P, Duan X. Ethanol extract of Rubia yunnanensis inhibits carotid atherosclerosis via the PI3K/AKT signaling pathway. Biomed Rep 2024; 20:19. [PMID: 38170026 PMCID: PMC10758924 DOI: 10.3892/br.2023.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerosis is a multifactorial vascular disease caused by endothelial dysfunction. Because of adverse reactions to drugs used to treat atherosclerosis. For example, statins, which significantly reduce the burden of atherosclerotic disease, have been associated with muscle toxicity. There is a need to identify novel drugs for the prevention and treatment of atherosclerosis Rubia yunnanensis is a herbs commonly used in Asian countries for its protective effects against cardiovascular diseases. However, the mechanism of action of R. yunnanensis extract in carotid artery atherosclerosis has not been found. The carotid artery is usually used as a site for clinical evaluation of atherosclerosis. The present study aimed to determine the mechanism of action of R. yunnanensis extract in the inhibition of carotid atherosclerosis in apolipoprotein E gene knockout (ApoE-/-) mice. The mechanism of atherosclerosis inhibition was elucidated by detecting the blood lipid level, carotid artery pathology, and the protein expression of PI3K and AKT. The present study demonstrated that ethanol extract of R. yunnanensis reduced lipid levels, intima damage and carotid lipid accumulation and increased p-PI3K/PI3K and p-AKT/AKT protein levels in ApoE-/- mice fed high-fat diet for 12 weeks. It was hypothesized that the effects of R. yunnanensis extract may be achieved by regulation of the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Ethanol extract of R. yunnanensis decreased carotid atherosclerosis in ApoE-/- mice fed a high-fat diet via the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Therefore, R. yunnanensis may be a promising option for treating atherosclerosis in the future.
Collapse
Affiliation(s)
- Gaoyizhou Li
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Jianghao Cheng
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pu Chen
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
Wang Y, Pan Y, Hou M, Luo R, He J, Lin F, Xia X, Li P, He C, He P, Cheng S, Song Z. Danggui Shaoyao San ameliorates the lipid metabolism via the PPAR signaling pathway in a Danio rerio (zebrafish) model of hyperlipidemia. Biomed Pharmacother 2023; 168:115736. [PMID: 37852100 DOI: 10.1016/j.biopha.2023.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023] Open
Abstract
The escalating prevalence of hyperlipidemia has a profound impact on individuals' daily physiological well-being. The traditional Chinese medicine (TCM) prescription Danggui Shaoyao San (DSS) has demonstrated significant clinical efficacy and promising prospects for clinical application. Leveraging network pharmacology and bioinformatics, we hypothesize that DSS can ameliorate lipid metabolic disorders in hyperlipidemia by modulating the PPAR signaling pathway. In this study, we employed a zebrafish model to investigate the impact of DSS on lipid metabolism in hyperlipidemia. Body weight alterations were monitored by pre- and postmodeling weight measurements. Behavioral assessments and quantification of liver biochemical markers were conducted using relevant assay kits. Pathways associated with lipid metabolism were identified through network pharmacology and GEO analysis, while PCR was utilized to assess genes linked to lipid metabolism. Western blotting was employed to analyze protein expression levels, and liver tissue underwent Oil Red O and immunofluorescence staining to evaluate liver lipid deposition. Our findings demonstrate that DSS effectively impedes weight gain and reduces liver lipid accumulation in zebrafish models with elevated lipid levels. The therapeutic effects of DSS on lipid metabolism are mediated through its modulation of the PPAR signaling pathway, resulting in a significant reduction in lipid accumulation within the body and alleviation of certain hyperlipidemia-associated symptoms.
Collapse
Affiliation(s)
- Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Ying Pan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Fan Lin
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Xiaofang Xia
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China
| | - Pan He
- Research Institute of Zhong Nan Grain and Oil Foods, Changsha 410208, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of integrated Chinese and western medicine, Hunan University of Chinese medicine, Changsha 410208, Hunan, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, Hunan, China.
| |
Collapse
|