1
|
Liu J, Gui Y, Rao J, Sun J, Wang G, Ren Q, Qu N, Niu B, Chen Z, Sheng X, Wang Y, Zheng M, Li X. In silico off-target profiling for enhanced drug safety assessment. Acta Pharm Sin B 2024; 14:2927-2941. [PMID: 39027254 PMCID: PMC11252485 DOI: 10.1016/j.apsb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 07/20/2024] Open
Abstract
Ensuring drug safety in the early stages of drug development is crucial to avoid costly failures in subsequent phases. However, the economic burden associated with detecting drug off-targets and potential side effects through in vitro safety screening and animal testing is substantial. Drug off-target interactions, along with the adverse drug reactions they induce, are significant factors affecting drug safety. To assess the liability of candidate drugs, we developed an artificial intelligence model for the precise prediction of compound off-target interactions, leveraging multi-task graph neural networks. The outcomes of off-target predictions can serve as representations for compounds, enabling the differentiation of drugs under various ATC codes and the classification of compound toxicity. Furthermore, the predicted off-target profiles are employed in adverse drug reaction (ADR) enrichment analysis, facilitating the inference of potential ADRs for a drug. Using the withdrawn drug Pergolide as an example, we elucidate the mechanisms underlying ADRs at the target level, contributing to the exploration of the potential clinical relevance of newly predicted off-target interactions. Overall, our work facilitates the early assessment of compound safety/toxicity based on off-target identification, deduces potential ADRs of drugs, and ultimately promotes the secure development of drugs.
Collapse
Affiliation(s)
- Jin Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yike Gui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingxin Rao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Sun
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Ren
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Qu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buying Niu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyi Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 330106, China
| | - Xia Sheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitian Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 330106, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Memarzadeh H, Ghadiri N, Samwald M, Lotfi Shahreza M. A study into patient similarity through representation learning from medical records. Knowl Inf Syst 2022. [DOI: 10.1007/s10115-022-01740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Salas M, Petracek J, Yalamanchili P, Aimer O, Kasthuril D, Dhingra S, Junaid T, Bostic T. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature. Pharmaceut Med 2022; 36:295-306. [PMID: 35904529 DOI: 10.1007/s40290-022-00441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Artificial intelligence through machine learning uses algorithms and prior learnings to make predictions. Recently, there has been interest to include more artificial intelligence in pharmacovigilance of products already in the market and pharmaceuticals in development. OBJECTIVE The aim of this study was to identify and describe the uses of artificial intelligence in pharmacovigilance through a systematic literature review. METHODS Embase and MEDLINE database searches were conducted for articles published from January 1, 2015 to July 9, 2021 using search terms such as 'pharmacovigilance,' 'patient safety,' 'artificial intelligence,' and 'machine learning' in the title or abstract. Scientific articles that contained information on the use of artificial intelligence in all modalities of patient safety or pharmacovigilance were reviewed and synthesized using a pre-specified data extraction template. Articles with incomplete information and letters to editor, notes, and commentaries were excluded. RESULTS Sixty-six articles were identified for evaluation. Most relevant articles on artificial intelligence focused on machine learning, and it was used in patient safety in the identification of adverse drug events (ADEs) and adverse drug reactions (ADRs) (57.6%), processing safety reports (21.2%), extraction of drug-drug interactions (7.6%), identification of populations at high risk for drug toxicity or guidance for personalized care (7.6%), prediction of side effects (3.0%), simulation of clinical trials (1.5%), and integration of prediction uncertainties into diagnostic classifiers to increase patient safety (1.5%). Artificial intelligence has been used to identify safety signals through automated processes and training with machine learning models; however, the findings may not be generalizable given that there were different types of data included in each source. CONCLUSION Artificial intelligence allows for the processing and analysis of large amounts of data and can be applied to various disease states. The automation and machine learning models can optimize pharmacovigilance processes and provide a more efficient way to analyze information relevant to safety, although more research is needed to identify if this optimization has an impact on the quality of safety analyses. It is expected that its use will increase in the near future, particularly with its role in the prediction of side effects and ADRs.
Collapse
Affiliation(s)
- Maribel Salas
- Daiichi Sankyo, Inc. & Center for Real-World Effectiveness and Safety of Therapeutics (CREST), University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 211 Mount Airy Rd, Basking Ridge, NJ, USA
| | - Jan Petracek
- Institute of Pharmacovigilance, Hvezdova 2b, 14000, Prague, Czech Republic
| | - Priyanka Yalamanchili
- Daiichi Sankyo, Inc. & Rutgers University, 211 Mount Airy Rd, Basking Ridge, NJ, USA.
| | | | | | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | | | - Tina Bostic
- PPD, part of Thermo Fisher Scientific, Wilmington, NC, USA
| |
Collapse
|
4
|
Santiso S, Perez A, Casillas A. Exploring Joint AB-LSTM With Embedded Lemmas for Adverse Drug Reaction Discovery. IEEE J Biomed Health Inform 2019; 23:2148-2155. [DOI: 10.1109/jbhi.2018.2879744] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Nti IK, Adekoya AF, Weyori BA. A systematic review of fundamental and technical analysis of stock market predictions. Artif Intell Rev 2019. [DOI: 10.1007/s10462-019-09754-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Santiso S, Pérez A, Casillas A. Smoothing dense spaces for improved relation extraction between drugs and adverse reactions. Int J Med Inform 2019; 128:39-45. [PMID: 31160010 DOI: 10.1016/j.ijmedinf.2019.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/28/2019] [Accepted: 05/11/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVE This work aims at extracting Adverse Drug Reactions (ADRs), i.e. a harm directly caused by a drug at normal doses, from Electronic Health Records (EHRs). The lack of readily available EHRs because of confidentiality issues and their lexical variability make the ADR extraction challenging. Furthermore, ADRs are rare events. Therefore, efficient representations against data sparsity are needed. METHODS Embedding-based characterizations are able to group semantically related words. However, dense spaces suffer from data sparsity. We employed context-aware continuous representations to enhance the modelling of infrequent events through their context and we turned to simple smoothing techniques to increase the proximity between similar words (e.g. direction cosines, truncation, Principal Component Analysis (PCA) and clustering) in an attempt to cope with data sparsity. RESULTS An F-measure of 0.639 for the ADR classification was achieved, obtaining an improvement of approximately 0.300 in comparison with the results obtained by a word-based characterization. CONCLUSION The embbeding-based representation together with the smoothing techniques increased the robustness of the ADR characterization. It was proven particularly appropriate to cope with lexical variability and data sparsity.
Collapse
Affiliation(s)
- Sara Santiso
- IXA group, University of the Basque Country (UPV-EHU), Manuel Lardizabal 1, 20080 Donostia, Spain.
| | - Alicia Pérez
- IXA group, University of the Basque Country (UPV-EHU), Manuel Lardizabal 1, 20080 Donostia, Spain.
| | - Arantza Casillas
- IXA group, University of the Basque Country (UPV-EHU), Manuel Lardizabal 1, 20080 Donostia, Spain.
| |
Collapse
|
7
|
Natsiavas P, Malousi A, Bousquet C, Jaulent MC, Koutkias V. Computational Advances in Drug Safety: Systematic and Mapping Review of Knowledge Engineering Based Approaches. Front Pharmacol 2019; 10:415. [PMID: 31156424 PMCID: PMC6533857 DOI: 10.3389/fphar.2019.00415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Drug Safety (DS) is a domain with significant public health and social impact. Knowledge Engineering (KE) is the Computer Science discipline elaborating on methods and tools for developing “knowledge-intensive” systems, depending on a conceptual “knowledge” schema and some kind of “reasoning” process. The present systematic and mapping review aims to investigate KE-based approaches employed for DS and highlight the introduced added value as well as trends and possible gaps in the domain. Journal articles published between 2006 and 2017 were retrieved from PubMed/MEDLINE and Web of Science® (873 in total) and filtered based on a comprehensive set of inclusion/exclusion criteria. The 80 finally selected articles were reviewed on full-text, while the mapping process relied on a set of concrete criteria (concerning specific KE and DS core activities, special DS topics, employed data sources, reference ontologies/terminologies, and computational methods, etc.). The analysis results are publicly available as online interactive analytics graphs. The review clearly depicted increased use of KE approaches for DS. The collected data illustrate the use of KE for various DS aspects, such as Adverse Drug Event (ADE) information collection, detection, and assessment. Moreover, the quantified analysis of using KE for the respective DS core activities highlighted room for intensifying research on KE for ADE monitoring, prevention and reporting. Finally, the assessed use of the various data sources for DS special topics demonstrated extensive use of dominant data sources for DS surveillance, i.e., Spontaneous Reporting Systems, but also increasing interest in the use of emerging data sources, e.g., observational healthcare databases, biochemical/genetic databases, and social media. Various exemplar applications were identified with promising results, e.g., improvement in Adverse Drug Reaction (ADR) prediction, detection of drug interactions, and novel ADE profiles related with specific mechanisms of action, etc. Nevertheless, since the reviewed studies mostly concerned proof-of-concept implementations, more intense research is required to increase the maturity level that is necessary for KE approaches to reach routine DS practice. In conclusion, we argue that efficiently addressing DS data analytics and management challenges requires the introduction of high-throughput KE-based methods for effective knowledge discovery and management, resulting ultimately, in the establishment of a continuous learning DS system.
Collapse
Affiliation(s)
- Pantelis Natsiavas
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece.,Sorbonne Université, INSERM, Univ Paris 13, Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances pour la e-Santé, LIMICS, Paris, France
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Cédric Bousquet
- Sorbonne Université, INSERM, Univ Paris 13, Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances pour la e-Santé, LIMICS, Paris, France.,Public Health and Medical Information Unit, University Hospital of Saint-Etienne, Saint-Étienne, France
| | - Marie-Christine Jaulent
- Sorbonne Université, INSERM, Univ Paris 13, Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances pour la e-Santé, LIMICS, Paris, France
| | - Vassilis Koutkias
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
8
|
Bai T, Chanda AK, Egleston BL, Vucetic S. EHR phenotyping via jointly embedding medical concepts and words into a unified vector space. BMC Med Inform Decis Mak 2018; 18:123. [PMID: 30537974 PMCID: PMC6290514 DOI: 10.1186/s12911-018-0672-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background There has been an increasing interest in learning low-dimensional vector representations of medical concepts from Electronic Health Records (EHRs). Vector representations of medical concepts facilitate exploratory analysis and predictive modeling of EHR data to gain insights about the patterns of care and health outcomes. EHRs contain structured data such as diagnostic codes and laboratory tests, as well as unstructured free text data in form of clinical notes, which provide more detail about condition and treatment of patients. Methods In this work, we propose a method that jointly learns vector representations of medical concepts and words. This is achieved by a novel learning scheme based on the word2vec model. Our model learns those relationships by integrating clinical notes and sets of accompanying medical codes and by defining joint contexts for each observed word and medical code. Results In our experiments, we learned joint representations using MIMIC-III data. Using the learned representations of words and medical codes, we evaluated phenotypes for 6 diseases discovered by our and baseline method. The experimental results show that for each of the 6 diseases our method finds highly relevant words. We also show that our representations can be very useful when predicting the reason for the next visit. Conclusions The jointly learned representations of medical concepts and words capture not only similarity between codes or words themselves, but also similarity between codes and words. They can be used to extract phenotypes of different diseases. The representations learned by the joint model are also useful for construction of patient features.
Collapse
Affiliation(s)
- Tian Bai
- Department of Computer & Information Sciences, Temple University, Philadelphia, PA, USA
| | - Ashis Kumar Chanda
- Department of Computer & Information Sciences, Temple University, Philadelphia, PA, USA
| | - Brian L Egleston
- Fox Chase Cancer Center, Temple University, Philadelphia, PA, USA
| | - Slobodan Vucetic
- Department of Computer & Information Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Kensert A, Alvarsson J, Norinder U, Spjuth O. Evaluating parameters for ligand-based modeling with random forest on sparse data sets. J Cheminform 2018; 10:49. [PMID: 30306349 PMCID: PMC6755600 DOI: 10.1186/s13321-018-0304-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Ligand-based predictive modeling is widely used to generate predictive models aiding decision making in e.g. drug discovery projects. With growing data sets and requirements on low modeling time comes the necessity to analyze data sets efficiently to support rapid and robust modeling. In this study we analyzed four data sets and studied the efficiency of machine learning methods on sparse data structures, utilizing Morgan fingerprints of different radii and hash sizes, and compared with molecular signatures descriptor of different height. We specifically evaluated the effect these parameters had on modeling time, predictive performance, and memory requirements using two implementations of random forest; Scikit-learn as well as FEST. We also compared with a support vector machine implementation. Our results showed that unhashed fingerprints yield significantly better accuracy than hashed fingerprints ([Formula: see text]), with no pronounced deterioration in modeling time and memory usage. Furthermore, the fast execution and low memory usage of the FEST algorithm suggest that it is a good alternative for large, high dimensional sparse data. Both support vector machines and random forest performed equally well but results indicate that the support vector machine was better at using the extra information from larger values of the Morgan fingerprint's radius.
Collapse
Affiliation(s)
- Alexander Kensert
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Jonathan Alvarsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ulf Norinder
- Unit of Toxicology Sciences, Karolinska Institutet, Swetox, Forskargatan 20, SE-15136, Södertälje, Sweden.,Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07, Kista, Sweden
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|