1
|
Watkins H, Gray R, Julius A, Mah YH, Teo J, Pinaya WHL, Wright P, Jha A, Engleitner H, Cardoso J, Ourselin S, Rees G, Jaeger R, Nachev P. Neuradicon: Operational representation learning of neuroimaging reports. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 262:108638. [PMID: 39951958 DOI: 10.1016/j.cmpb.2025.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND OBJECTIVE Radiological reports typically summarize the content and interpretation of imaging studies in unstructured form that precludes quantitative analysis. This limits the monitoring of radiological services to throughput undifferentiated by content, impeding specific, targeted operational optimization. Here we present Neuradicon, a natural language processing (NLP) framework for quantitative analysis of neuroradiological reports. METHODS Our framework is a hybrid of rule-based and machine-learning models to represent neurological reports in succinct, quantitative form optimally suited to operational guidance. These include probabilistic models for text classification and tagging tasks, alongside auto-encoders for learning latent representations and statistical mapping of the latent space. RESULTS We demonstrate the application of Neuradicon to operational phenotyping of a corpus of 336,569 reports, and report excellent generalizability across time and two independent healthcare institutions. In particular, we report pathology classification metrics with f1-scores of 0.96 on prospective data, and semantic means of interrogating the phenotypes surfaced via latent space representations. CONCLUSION Neuradicon allows the segmentation, analysis, classification, representation and interrogation of neuroradiological reports structure and content. It offers a blueprint for the extraction of rich, quantitative, actionable signals from unstructured text data in an operational context.
Collapse
Affiliation(s)
- Henry Watkins
- Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Robert Gray
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Adam Julius
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yee-Haur Mah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - James Teo
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Walter H L Pinaya
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Paul Wright
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Ashwani Jha
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Holger Engleitner
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jorge Cardoso
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Geraint Rees
- University College London, London, United Kingdom
| | - Rolf Jaeger
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Parashkev Nachev
- Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
2
|
Muniyappan S, Rayan AXA, Varrieth GT. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources. J Biomed Inform 2023; 147:104528. [PMID: 37858852 DOI: 10.1016/j.jbi.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
MOTIVATION Drug repurposing (DR) is an imminent approach for identifying novel therapeutic indications for the available drugs and discovering novel drugs for previously untreatable diseases. Nowadays, DR has major attention in the pharmaceutical industry due to the high cost and time of launching new drugs to the market through traditional drug development. DR task majorly depends on genetic information since the drugs revert the modified Gene Expression (GE) of diseases to normal. Many of the existing studies have not considered the genetic importance of predicting the potential candidates. METHOD We proposed a novel multimodal framework that utilizes genetic aspects of drugs and diseases such as genes, pathways, gene signatures, or expression to enhance the performance of DR using various data sources. Firstly, the heterogeneous biological network (HBN) is constructed with three types of nodes namely drug, disease, and gene, and 4 types of edges similarities (drug, gene, and disease), drug-gene, gene-disease, and drug-disease. Next, a modified graph auto-encoder (GAE*) model is applied to learn the representation of drug and disease nodes using the topological structure and edge information. Secondly, the HBN is enhanced with the information extracted from biomedical literature and ontology using a novel semi-supervised pattern embedding-based bootstrapping model and novel DR perspective representation learning respectively to improve the prediction performance. Finally, our proposed system uses a neural network model to generate the probability score of drug-disease pairs. RESULTS We demonstrate the efficiency of the proposed model on various datasets and achieved outstanding performance in 5-fold cross-validation (AUC = 0.99, AUPR = 0.98). Further, we validated the top-ranked potential candidates using pathway analysis and proved that the known and predicted candidates share common genes in the pathways.
Collapse
Affiliation(s)
- Saranya Muniyappan
- Computer Science and Engineering, CEG Campus, Anna University, Chennai, Tamil Nadu, India.
| | | | | |
Collapse
|
3
|
Peng C, Yang X, Yu Z, Bian J, Hogan WR, Wu Y. Clinical concept and relation extraction using prompt-based machine reading comprehension. J Am Med Inform Assoc 2023; 30:1486-1493. [PMID: 37316988 PMCID: PMC10436141 DOI: 10.1093/jamia/ocad107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVE To develop a natural language processing system that solves both clinical concept extraction and relation extraction in a unified prompt-based machine reading comprehension (MRC) architecture with good generalizability for cross-institution applications. METHODS We formulate both clinical concept extraction and relation extraction using a unified prompt-based MRC architecture and explore state-of-the-art transformer models. We compare our MRC models with existing deep learning models for concept extraction and end-to-end relation extraction using 2 benchmark datasets developed by the 2018 National NLP Clinical Challenges (n2c2) challenge (medications and adverse drug events) and the 2022 n2c2 challenge (relations of social determinants of health [SDoH]). We also evaluate the transfer learning ability of the proposed MRC models in a cross-institution setting. We perform error analyses and examine how different prompting strategies affect the performance of MRC models. RESULTS AND CONCLUSION The proposed MRC models achieve state-of-the-art performance for clinical concept and relation extraction on the 2 benchmark datasets, outperforming previous non-MRC transformer models. GatorTron-MRC achieves the best strict and lenient F1-scores for concept extraction, outperforming previous deep learning models on the 2 datasets by 1%-3% and 0.7%-1.3%, respectively. For end-to-end relation extraction, GatorTron-MRC and BERT-MIMIC-MRC achieve the best F1-scores, outperforming previous deep learning models by 0.9%-2.4% and 10%-11%, respectively. For cross-institution evaluation, GatorTron-MRC outperforms traditional GatorTron by 6.4% and 16% for the 2 datasets, respectively. The proposed method is better at handling nested/overlapped concepts, extracting relations, and has good portability for cross-institute applications. Our clinical MRC package is publicly available at https://github.com/uf-hobi-informatics-lab/ClinicalTransformerMRC.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Xi Yang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Cancer Informatics Shared Resource, University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Zehao Yu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Cancer Informatics Shared Resource, University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - William R Hogan
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Cancer Informatics Shared Resource, University of Florida Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
4
|
Fernandes MB, Valizadeh N, Alabsi HS, Quadri SA, Tesh RA, Bucklin AA, Sun H, Jain A, Brenner LN, Ye E, Ge W, Collens SI, Lin S, Das S, Robbins GK, Zafar SF, Mukerji SS, Westover MB. Classification of neurologic outcomes from medical notes using natural language processing. EXPERT SYSTEMS WITH APPLICATIONS 2023; 214:119171. [PMID: 36865787 PMCID: PMC9974159 DOI: 10.1016/j.eswa.2022.119171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurologic disability level at hospital discharge is an important outcome in many clinical research studies. Outside of clinical trials, neurologic outcomes must typically be extracted by labor intensive manual review of clinical notes in the electronic health record (EHR). To overcome this challenge, we set out to develop a natural language processing (NLP) approach that automatically reads clinical notes to determine neurologic outcomes, to make it possible to conduct larger scale neurologic outcomes studies. We obtained 7314 notes from 3632 patients hospitalized at two large Boston hospitals between January 2012 and June 2020, including discharge summaries (3485), occupational therapy (1472) and physical therapy (2357) notes. Fourteen clinical experts reviewed notes to assign scores on the Glasgow Outcome Scale (GOS) with 4 classes, namely 'good recovery', 'moderate disability', 'severe disability', and 'death' and on the Modified Rankin Scale (mRS), with 7 classes, namely 'no symptoms', 'no significant disability', 'slight disability', 'moderate disability', 'moderately severe disability', 'severe disability', and 'death'. For 428 patients' notes, 2 experts scored the cases generating interrater reliability estimates for GOS and mRS. After preprocessing and extracting features from the notes, we trained a multiclass logistic regression model using LASSO regularization and 5-fold cross validation for hyperparameter tuning. The model performed well on the test set, achieving a micro average area under the receiver operating characteristic and F-score of 0.94 (95% CI 0.93-0.95) and 0.77 (0.75-0.80) for GOS, and 0.90 (0.89-0.91) and 0.59 (0.57-0.62) for mRS, respectively. Our work demonstrates that an NLP algorithm can accurately assign neurologic outcomes based on free text clinical notes. This algorithm increases the scale of research on neurological outcomes that is possible with EHR data.
Collapse
Affiliation(s)
- Marta B. Fernandes
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Navid Valizadeh
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Haitham S. Alabsi
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Syed A. Quadri
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Ryan A. Tesh
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Abigail A. Bucklin
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Aayushee Jain
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Laura N. Brenner
- Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, MGH, Boston, MA, United States
- Division of General Internal Medicine, MGH, Boston, MA, United States
| | - Elissa Ye
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Wendong Ge
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Sarah I. Collens
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Stacie Lin
- Harvard Medical School, Boston, MA, United States
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Gregory K. Robbins
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, MGH, Boston, MA, United States
| | - Sahar F. Zafar
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Shibani S. Mukerji
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, MGH, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
- McCance Center for Brain Health, MGH, Boston, MA, United States
| |
Collapse
|
5
|
Sabharwal R, Miah SJ, Fosso Wamba S. Extending artificial intelligence research in the clinical domain: a theoretical perspective. ANNALS OF OPERATIONS RESEARCH 2022:1-32. [PMID: 36407943 PMCID: PMC9641309 DOI: 10.1007/s10479-022-05035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Academic research to the utilization of artificial intelligence (AI) has been proliferated over the past few years. While AI and its subsets are continuously evolving in the fields of marketing, social media and finance, its application in the daily practice of clinical care is insufficiently explored. In this systematic review, we aim to landscape various application areas of clinical care in terms of the utilization of machine learning to improve patient care. Through designing a specific smart literature review approach, we give a new insight into existing literature identified with AI technologies in the clinical domain. Our review approach focuses on strategies, algorithms, applications, results, qualities, and implications using the Latent Dirichlet Allocation topic modeling. A total of 305 unique articles were reviewed, with 115 articles selected using Latent Dirichlet Allocation topic modeling, meeting our inclusion criteria. The primary result of this approach incorporates a proposition for future research direction, abilities, and influence of AI technologies and displays the areas of disease management in clinics. This research concludes with disease administrative ramifications, limitations, and directions for future research.
Collapse
Affiliation(s)
- Renu Sabharwal
- Newcastle Business School, The University of Newcastle, Callaghan, NSW Australia
| | - Shah J. Miah
- Newcastle Business School, The University of Newcastle, Callaghan, NSW Australia
| | | |
Collapse
|
6
|
Chen T, Wu X, Li L, Li J, Feng S. Extraction of entity relations from Chinese medical literature based on multi-scale CRNN. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:520. [PMID: 35928762 PMCID: PMC9347033 DOI: 10.21037/atm-22-1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022]
Abstract
Background Entity relation extraction technology can be used to extract entities and relations from medical literature, and automatically establish professional mapping knowledge domains. The classical text classification model, convolutional neural networks for sentence classification (TEXTCNN), has been shown to have good classification performance, but also has a long-distance dependency problem, which is a common problem of convolutional neural networks (CNNs). Recurrent neural networks (RNN) address the long-distance dependency problem but cannot capture text features at a specific scale in the text. Methods To solve these problems, this study sought to establish a model with a multi-scale convolutional recurrent neural network for Sentence Classification (TEXTCRNN) to address the deficiencies in the 2 neural network structures. In entity relation extraction, the entity pair is generally composed of a subject and an object, but as the subject in the entity pair of medical literature is always omitted, it is difficult to use this coding method to obtain general entity position information. Thus, we proposed a new coding method to obtain entity position information to re-establish the relationship between subject and object and complete the entity relation extraction. Results By comparing the benchmark neural network model and 2 typical multi-scale TEXTCRNN models, the TEXTCRNN [bidirectional long- and short-term memory (BiLSTM)] and TEXTCRNN [double-layer stacking gated recurrent unit (GRU)], the results showed that the multi-scale CRNN model had the best F1 value performance, and the TEXTCRNN (double-layer stacking GRU) was more capable of entity relation classification when the same entity word did not belong to the same entity relation. Conclusions The experimental results of the entity relation extraction from Pharmacopoeia of the People's Republic of China-Guidelines for Clinical Drug Use-Volume of Chemical Drugs and Biological Products showed that entity relation extraction could effectively proceed using the new labeling method. Additionally, compared to typical neural network models, including the TEXTCNN, GRU, and BiLSTM, the multi-scale convolutional recurrent neural network structure had advantages across several evaluation indicators.
Collapse
Affiliation(s)
- Tingyin Chen
- Department of Network and Information, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Xuehong Wu
- Hunan Creator Information Technology Co. Ltd, Changsha, China
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Linyi Li
- Hunan Creator Information Technology Co. Ltd, Changsha, China
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianhua Li
- Hunan Creator Information Technology Co. Ltd, Changsha, China
| | - Song Feng
- Department of Network and Information, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| |
Collapse
|
7
|
Li H. Research on Feature Extraction and Chinese Translation Method of Internet-of-Things English Terminology. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6344571. [PMID: 35528369 PMCID: PMC9071986 DOI: 10.1155/2022/6344571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Feature extraction and Chinese translation of Internet-of-Things English terms are the basis of many natural language processing. Its main purpose is to extract rich semantic information from unstructured texts to allow computers to further calculate and process them to meet different types of NLP-based tasks. However, most of the current methods use simple neural network models to count the word frequency or probability of words in the text, and it is difficult to accurately understand and translate IoT English terms. In response to this problem, this study proposes a neural network for feature extraction and Chinese translation of IoT English terms based on LSTM, which can not only correctly extract and translate IoT English vocabulary but also realize the feature correspondence between English and Chinese. The neural network proposed in this study has been tested and trained on multiple datasets, and it basically fulfills the requirements of feature translation and Chinese translation of Internet-of-Things terms in English and has great potential in the follow-up work.
Collapse
Affiliation(s)
- Huasu Li
- Fundamental Teaching Department, Huanghe Jiaotong University, Jiaozuo 454950, China
| |
Collapse
|
8
|
A Survey on Recent Named Entity Recognition and Relationship Extraction Techniques on Clinical Texts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant growth in Electronic Health Records (EHR) over the last decade has provided an abundance of clinical text that is mostly unstructured and untapped. This huge amount of clinical text data has motivated the development of new information extraction and text mining techniques. Named Entity Recognition (NER) and Relationship Extraction (RE) are key components of information extraction tasks in the clinical domain. In this paper, we highlight the present status of clinical NER and RE techniques in detail by discussing the existing proposed NLP models for the two tasks and their performances and discuss the current challenges. Our comprehensive survey on clinical NER and RE encompass current challenges, state-of-the-art practices, and future directions in information extraction from clinical text. This is the first attempt to discuss both of these interrelated topics together in the clinical context. We identified many research articles published based on different approaches and looked at applications of these tasks. We also discuss the evaluation metrics that are used in the literature to measure the effectiveness of the two these NLP methods and future research directions.
Collapse
|
9
|
Kanjirangat V, Rinaldi F. Enhancing Biomedical Relation Extraction with Transformer Models using Shortest Dependency Path Features and Triplet Information. J Biomed Inform 2021; 122:103893. [PMID: 34481058 DOI: 10.1016/j.jbi.2021.103893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Entity relation extraction plays an important role in the biomedical, healthcare, and clinical research areas. Recently, pre-trained models based on transformer architectures and their variants have shown remarkable performances in various natural language processing tasks. Most of these variants were based on slight modifications in the architectural components, representation schemes and augmenting data using distant supervision methods. In distantly supervised methods, one of the main challenges is pruning out noisy samples. A similar situation can arise when the training samples are not directly available but need to be constructed from the given dataset. The BioCreative V Chemical Disease Relation (CDR) task provides a dataset that does not explicitly offer mention-level gold annotations and hence replicates the above scenario. Selecting the representative sentences from the given abstract or document text that could convey a potential entity relationship becomes essential. Most of the existing methods in literature propose to either consider the entire text or all the sentences which contain the entity mentions. This could be a computationally expensive and time consuming approach. This paper presents a novel approach to handle such scenarios, specifically in biomedical relation extraction. We propose utilizing the Shortest Dependency Path (SDP) features for constructing data samples by pruning out noisy information and selecting the most representative samples for model learning. We also utilize triplet information in model learning using the biomedical variant of BERT, viz., BioBERT. The problem is represented as a sentence pair classification task using the sentence and the entity-relation pair as input. We analyze the approach on both intra-sentential and inter-sentential relations in the CDR dataset. The proposed approach that utilizes the SDP and triplet features presents promising results, specifically on the inter-sentential relation extraction task. We make the code used for this work publicly available on Github.1.
Collapse
Affiliation(s)
- Vani Kanjirangat
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale USI/SUPSI, Lugano, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Fabio Rinaldi
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale USI/SUPSI, Lugano, Switzerland; Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
10
|
Ayre K, Bittar A, Kam J, Verma S, Howard LM, Dutta R. Developing a Natural Language Processing tool to identify perinatal self-harm in electronic healthcare records. PLoS One 2021; 16:e0253809. [PMID: 34347787 PMCID: PMC8336818 DOI: 10.1371/journal.pone.0253809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Self-harm occurring within pregnancy and the postnatal year ("perinatal self-harm") is a clinically important yet under-researched topic. Current research likely under-estimates prevalence due to methodological limitations. Electronic healthcare records (EHRs) provide a source of clinically rich data on perinatal self-harm. AIMS (1) To create a Natural Language Processing (NLP) tool that can, with acceptable precision and recall, identify mentions of acts of perinatal self-harm within EHRs. (2) To use this tool to identify service-users who have self-harmed perinatally, based on their EHRs. METHODS We used the Clinical Record Interactive Search system to extract de-identified EHRs of secondary mental healthcare service-users at South London and Maudsley NHS Foundation Trust. We developed a tool that applied several layers of linguistic processing based on the spaCy NLP library for Python. We evaluated mention-level performance in the following domains: span, status, temporality and polarity. Evaluation was done against a manually coded reference standard. Mention-level performance was reported as precision, recall, F-score and Cohen's kappa for each domain. Performance was also assessed at 'service-user' level and explored whether a heuristic rule improved this. We report per-class statistics for service-user performance, as well as likelihood ratios and post-test probabilities. RESULTS Mention-level performance: micro-averaged F-score, precision and recall for span, polarity and temporality >0.8. Kappa for status 0.68, temporality 0.62, polarity 0.91. Service-user level performance with heuristic: F-score, precision, recall of minority class 0.69, macro-averaged F-score 0.81, positive LR 9.4 (4.8-19), post-test probability 69.0% (53-82%). Considering the task difficulty, the tool performs well, although temporality was the attribute with the lowest level of annotator agreement. CONCLUSIONS It is feasible to develop an NLP tool that identifies, with acceptable validity, mentions of perinatal self-harm within EHRs, although with limitations regarding temporality. Using a heuristic rule, it can also function at a service-user-level.
Collapse
Affiliation(s)
- Karyn Ayre
- Section of Women’s Mental Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, London, United Kingdom
- * E-mail:
| | - André Bittar
- Academic Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Joyce Kam
- King’s College London GKT School of Medical Education, London, United Kingdom
| | - Somain Verma
- King’s College London GKT School of Medical Education, London, United Kingdom
| | - Louise M. Howard
- Section of Women’s Mental Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, London, United Kingdom
| | - Rina Dutta
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Kent, London, United Kingdom
- Academic Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
11
|
Abstract
Electronic health records (EHRs) are becoming a vital source of data for healthcare quality improvement, research, and operations. However, much of the most valuable information contained in EHRs remains buried in unstructured text. The field of clinical text mining has advanced rapidly in recent years, transitioning from rule-based approaches to machine learning and, more recently, deep learning. With new methods come new challenges, however, especially for those new to the field. This review provides an overview of clinical text mining for those who are encountering it for the first time (e.g., physician researchers, operational analytics teams, machine learning scientists from other domains). While not a comprehensive survey, this review describes the state of the art, with a particular focus on new tasks and methods developed over the past few years. It also identifies key barriers between these remarkable technical advances and the practical realities of implementation in health systems and in industry.
Collapse
Affiliation(s)
- Bethany Percha
- Department of Medicine and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA;
| |
Collapse
|
12
|
Jamali M, Grannan BL, Fedorenko E, Saxe R, Báez-Mendoza R, Williams ZM. Single-neuronal predictions of others' beliefs in humans. Nature 2021; 591:610-614. [PMID: 33505022 PMCID: PMC7990696 DOI: 10.1038/s41586-021-03184-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/10/2020] [Indexed: 01/30/2023]
Abstract
Human social behaviour crucially depends on our ability to reason about others. This capacity for theory of mind has a vital role in social cognition because it enables us not only to form a detailed understanding of the hidden thoughts and beliefs of other individuals but also to understand that they may differ from our own1-3. Although a number of areas in the human brain have been linked to social reasoning4,5 and its disruption across a variety of psychosocial disorders6-8, the basic cellular mechanisms that underlie human theory of mind remain undefined. Here, using recordings from single cells in the human dorsomedial prefrontal cortex, we identify neurons that reliably encode information about others' beliefs across richly varying scenarios and that distinguish self- from other-belief-related representations. By further following their encoding dynamics, we show how these cells represent the contents of the others' beliefs and accurately predict whether they are true or false. We also show how they track inferred beliefs from another's specific perspective and how their activities relate to behavioural performance. Together, these findings reveal a detailed cellular process in the human dorsomedial prefrontal cortex for representing another's beliefs and identify candidate neurons that could support theory of mind.
Collapse
Affiliation(s)
- Mohsen Jamali
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Benjamin L. Grannan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Evelina Fedorenko
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston MA
| | - Rebecca Saxe
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston MA
| | - Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Ziv M. Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston MA,Harvard-MIT Division of Health Sciences and Technology, Boston MA,Program in Neuroscience, Harvard Medical School, Boston MA,corresponding author,
| |
Collapse
|
13
|
Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, Soni S, Wang Q, Wei Q, Xiang Y, Zhao B, Xu H. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc 2021; 27:457-470. [PMID: 31794016 DOI: 10.1093/jamia/ocz200] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/15/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This article methodically reviews the literature on deep learning (DL) for natural language processing (NLP) in the clinical domain, providing quantitative analysis to answer 3 research questions concerning methods, scope, and context of current research. MATERIALS AND METHODS We searched MEDLINE, EMBASE, Scopus, the Association for Computing Machinery Digital Library, and the Association for Computational Linguistics Anthology for articles using DL-based approaches to NLP problems in electronic health records. After screening 1,737 articles, we collected data on 25 variables across 212 papers. RESULTS DL in clinical NLP publications more than doubled each year, through 2018. Recurrent neural networks (60.8%) and word2vec embeddings (74.1%) were the most popular methods; the information extraction tasks of text classification, named entity recognition, and relation extraction were dominant (89.2%). However, there was a "long tail" of other methods and specific tasks. Most contributions were methodological variants or applications, but 20.8% were new methods of some kind. The earliest adopters were in the NLP community, but the medical informatics community was the most prolific. DISCUSSION Our analysis shows growing acceptance of deep learning as a baseline for NLP research, and of DL-based NLP in the medical community. A number of common associations were substantiated (eg, the preference of recurrent neural networks for sequence-labeling named entity recognition), while others were surprisingly nuanced (eg, the scarcity of French language clinical NLP with deep learning). CONCLUSION Deep learning has not yet fully penetrated clinical NLP and is growing rapidly. This review highlighted both the popular and unique trends in this active field.
Collapse
Affiliation(s)
- Stephen Wu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kirk Roberts
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Surabhi Datta
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jingcheng Du
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zongcheng Ji
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yuqi Si
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sarvesh Soni
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Qiong Wang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Qiang Wei
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Xiang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bo Zhao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hua Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
14
|
Pandey B, Kumar Pandey D, Pratap Mishra B, Rhmann W. A comprehensive survey of deep learning in the field of medical imaging and medical natural language processing: Challenges and research directions. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021. [DOI: 10.1016/j.jksuci.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Perera N, Dehmer M, Emmert-Streib F. Named Entity Recognition and Relation Detection for Biomedical Information Extraction. Front Cell Dev Biol 2020; 8:673. [PMID: 32984300 PMCID: PMC7485218 DOI: 10.3389/fcell.2020.00673] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
The number of scientific publications in the literature is steadily growing, containing our knowledge in the biomedical, health, and clinical sciences. Since there is currently no automatic archiving of the obtained results, much of this information remains buried in textual details not readily available for further usage or analysis. For this reason, natural language processing (NLP) and text mining methods are used for information extraction from such publications. In this paper, we review practices for Named Entity Recognition (NER) and Relation Detection (RD), allowing, e.g., to identify interactions between proteins and drugs or genes and diseases. This information can be integrated into networks to summarize large-scale details on a particular biomedical or clinical problem, which is then amenable for easy data management and further analysis. Furthermore, we survey novel deep learning methods that have recently been introduced for such tasks.
Collapse
Affiliation(s)
- Nadeesha Perera
- Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Matthias Dehmer
- Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), Hall in Tirol, Austria
- College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Frank Emmert-Streib
- Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
- Faculty of Medicine and Health Technology, Institute of Biosciences and Medical Technology, Tampere University, Tampere, Finland
| |
Collapse
|
16
|
Peterson KJ, Jiang G, Liu H. A corpus-driven standardization framework for encoding clinical problems with HL7 FHIR. J Biomed Inform 2020; 110:103541. [PMID: 32814201 DOI: 10.1016/j.jbi.2020.103541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/17/2023]
Abstract
Free-text problem descriptions are brief explanations of patient diagnoses and issues, commonly found in problem lists and other prominent areas of the medical record. These compact representations often express complex and nuanced medical conditions, making their semantics challenging to fully capture and standardize. In this study, we describe a framework for transforming free-text problem descriptions into standardized Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) models. This approach leverages a combination of domain-specific dependency parsers, Bidirectional Encoder Representations from Transformers (BERT) natural language models, and cui2vec Unified Medical Language System (UMLS) concept vectors to align extracted concepts from free-text problem descriptions into structured FHIR models. A neural network classification model is used to classify thirteen relationship types between concepts, facilitating mapping to the FHIR Condition resource. We use data programming, a weak supervision approach, to eliminate the need for a manually annotated training corpus. Shapley values, a mechanism to quantify contribution, are used to interpret the impact of model features. We found that our methods identified the focus concept, or primary clinical concern of the problem description, with an F1 score of 0.95. Relationships from the focus to other modifying concepts were extracted with an F1 score of 0.90. When classifying relationships, our model achieved a 0.89 weighted average F1 score, enabling accurate mapping of attributes into HL7 FHIR models. We also found that the BERT input representation predominantly contributed to the classifier decision as shown by the Shapley values analysis.
Collapse
Affiliation(s)
- Kevin J Peterson
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, United States; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Guoqian Jiang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Hongfang Liu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States; Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
17
|
Wei Q, Ji Z, Si Y, Du J, Wang J, Tiryaki F, Wu S, Tao C, Roberts K, Xu H. Relation Extraction from Clinical Narratives Using Pre-trained Language Models. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2020; 2019:1236-1245. [PMID: 32308921 PMCID: PMC7153059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural language processing (NLP) is useful for extracting information from clinical narratives, and both traditional machine learning methods and more-recent deep learning methods have been successful in various clinical NLP tasks. These methods often depend on traditional word embeddings that are outputs of language models (LMs). Recently, methods that are directly based on pre-trained language models themselves, followed by fine-tuning on the LMs (e.g. the Bidirectional Encoder Representations from Transformers (BERT)), have achieved state-of-the-art performance on many NLP tasks. Despite their success in the open domain and biomedical literature, these pre-trained LMs have not yet been applied to the clinical relation extraction (RE) task. In this study, we developed two different implementations of the BERT model for clinical RE tasks. Our results show that our tuned LMs outperformed previous state-of-the-art RE systems in two shared tasks, which demonstrates the potential of LM-based methods on the RE task.
Collapse
Affiliation(s)
- Qiang Wei
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zongcheng Ji
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuqi Si
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jingcheng Du
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jingqi Wang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Firat Tiryaki
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephen Wu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cui Tao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kirk Roberts
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hua Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
18
|
Fkih F, Omri MN. Hidden data states-based complex terminology extraction from textual web data model. APPL INTELL 2020. [DOI: 10.1007/s10489-019-01568-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Semi-Automatic Corpus Expansion and Extraction of Uyghur-Named Entities and Relations Based on a Hybrid Method. INFORMATION 2020. [DOI: 10.3390/info11010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Relation extraction is an important task with many applications in natural language processing, such as structured knowledge extraction, knowledge graph construction, and automatic question answering system construction. However, relatively little past work has focused on the construction of the corpus and extraction of Uyghur-named entity relations, resulting in a very limited availability of relation extraction research and a deficiency of annotated relation data. This issue is addressed in the present article by proposing a hybrid Uyghur-named entity relation extraction method that combines a conditional random field model for making suggestions regarding annotation based on extracted relations with a set of rules applied by human annotators to rapidly increase the size of the Uyghur corpus. We integrate our relation extraction method into an existing annotation tool, and, with the help of human correction, we implement Uyghur relation extraction and expand the existing corpus. The effectiveness of our proposed approach is demonstrated based on experimental results by using an existing Uyghur corpus, and our method achieves a maximum weighted average between precision and recall of 61.34%. The method we proposed achieves state-of-the-art results on entity and relation extraction tasks in Uyghur.
Collapse
|
20
|
Zhang Y, Tao C, Gong Y, Wang K, Zhao Z. The International Conference on Intelligent Biology and Medicine 2018: Medical Informatics Thematic Track (MedicalInfo2018). BMC Med Inform Decis Mak 2019; 19:21. [PMID: 30700280 PMCID: PMC6354328 DOI: 10.1186/s12911-019-0732-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this editorial, we first summarize the 2018 International Conference on Intelligent Biology and Medicine (ICIBM 2018) that was held on June 10–12, 2018 in Los Angeles, California, USA, and then briefly introduce the six research articles included in this supplement issue. At ICIBM 2018, a special theme of Medical Informatics was dedicated to recent advances of data science in the medical domain. After peer review, six articles were selected in this thematic issue, covering topics such as clinical predictive modeling, clinical natural language processing (NLP), electroencephalogram (EEG) network analysis, and text mining in biomedical literature.
Collapse
Affiliation(s)
- Yaoyun Zhang
- Center for Computational Biomedicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Cui Tao
- Center for Computational Biomedicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yang Gong
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|