1
|
Brunner NC, Karim A, Athieno P, Kimera J, Tumukunde G, Angiro I, Signorell A, Delvento G, Lee TT, Lambiris M, Ogwal A, Nakiganda J, Mpanga F, Kagwire F, Amutuhaire M, Burri C, Lengeler C, Awor P, Hetzel MW. Starting at the community: Treatment-seeking pathways of children with suspected severe malaria in Uganda. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001949. [PMID: 37405978 DOI: 10.1371/journal.pgph.0001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/18/2023] [Indexed: 07/07/2023]
Abstract
Community health workers (CHW) usually refer children with suspected severe malaria to the nearest public health facility or a designated public referral health facility (RHF). Caregivers do not always follow this recommendation. This study aimed at identifying post-referral treatment-seeking pathways that lead to appropriate antimalarial treatment for children less than five years with suspected severe malaria. An observational study in Uganda enrolled children below five years presenting to CHWs with signs of severe malaria. Children were followed up 28 days after enrolment to assess their condition and treatment-seeking history, including referral advice and provision of antimalarial treatment from visited providers. Of 2211 children included in the analysis, 96% visited a second provider after attending a CHW. The majority of CHWs recommended caregivers to take their child to a designated RHF (65%); however, only 59% followed this recommendation. Many children were brought to a private clinic (33%), even though CHWs rarely recommended this type of provider (3%). Children who were brought to a private clinic were more likely to receive an injection than children brought to a RHF (78% vs 51%, p<0.001) and more likely to receive the second or third-line injectable antimalarial (artemether: 22% vs. 2%, p<0.001, quinine: 12% vs. 3%, p<0.001). Children who only went to non-RHF providers were less likely to receive an artemisinin-based combination therapy (ACT) than children who attended a RHF (odds ratio [OR] = 0.64, 95% CI 0.51-0.79, p<0.001). Children who did not go to any provider after seeing a CHW were the least likely to receive an ACT (OR = 0.21, 95% CI 0.14-0.34, p<0.001). Health policies should recognise local treatment-seeking practices and ensure adequate quality of care at the various public and private sector providers where caregivers of children with suspected severe malaria actually seek care.
Collapse
Affiliation(s)
- Nina C Brunner
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Aliya Karim
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Proscovia Athieno
- Community Health and Behavioural Sciences, Makerere University School of Public Health, Kampala, Uganda
| | - Joseph Kimera
- Community Health and Behavioural Sciences, Makerere University School of Public Health, Kampala, Uganda
| | - Gloria Tumukunde
- Community Health and Behavioural Sciences, Makerere University School of Public Health, Kampala, Uganda
| | - Irene Angiro
- Community Health and Behavioural Sciences, Makerere University School of Public Health, Kampala, Uganda
| | - Aita Signorell
- University of Basel, Basel, Switzerland
- Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Giulia Delvento
- University of Basel, Basel, Switzerland
- Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Tristan T Lee
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Mark Lambiris
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex Ogwal
- Malaria Programme, Clinton Health Access Initiative, Kampala, Uganda
| | - Juliet Nakiganda
- Malaria Programme, Clinton Health Access Initiative, Kampala, Uganda
| | - Flavia Mpanga
- Child Survival and Development, UNICEF, Kampala, Uganda
| | - Fred Kagwire
- Child Survival and Development, UNICEF, Kampala, Uganda
| | - Maureen Amutuhaire
- National Malaria Control Division, Uganda Ministry of Health, Kampala, Uganda
| | - Christian Burri
- University of Basel, Basel, Switzerland
- Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | - Christian Lengeler
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Phyllis Awor
- Community Health and Behavioural Sciences, Makerere University School of Public Health, Kampala, Uganda
| | - Manuel W Hetzel
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Artesunate inhibits osteoclastogenesis through the miR-503/RANK axis. Biosci Rep 2021; 40:225313. [PMID: 32542308 PMCID: PMC7374274 DOI: 10.1042/bsr20194387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a metabolic bone disease that is characterized by decreased bone density and strength due to excessive loss of bone protein and mineral content, which can be induced by increased osteoclast activity. Developing agents targeting osteoclast activation is considered to be the most effective method to reverse bone destruction and alleviate the pain caused by osteoporosis. MTT assay was conducted to detect the cell viability after artesunate treatment of RAW264.7 cells. TRACP staining and pit formation assays were performed to examine the TRACP-positive cells and pit-forming activity of osteoclasts. qRT-PCR and Western blot analysis were performed to assess the mRNA and protein expression levels of the osteoclastogenesis-related genes NFATc1, TRAP, and cathepsin k. The protein levels of RANK, p-Akt, p-p38, and p-ERK were examined by Western blotting. Luciferase reporter assay was conducted to determine whether miR-503 targeted RANK directly. Artesunate inhibited TRACP-positive cells and the pit-forming activity of osteoclasts. However, artesunate increased the expression of miR-503. Artesunate suppressed osteoclastogenesis-related gene expression and RANKL-induced activation of MAPKs and the AKT pathway. In addition, miR-503 inhibited RANK expression by directly targeting RANK during osteoclast differentiation. Artesunate inhibited osteoclastogenesis and osteoclast functions in vitro by regulating the miR-503/RANK axis and suppressing the MAPK and AKT pathways, which resulted in decreased expression of osteoclastogenesis-related markers.
Collapse
|
3
|
Pantoprazole (PPZ) Inhibits RANKL-Induced Osteoclast Formation and Function In Vitro and Prevents Lipopolysaccharide- (LPS-) Induced Inflammatory Calvarial Bone Loss In Vivo. Stem Cells Int 2020; 2020:8829212. [PMID: 33354217 PMCID: PMC7737473 DOI: 10.1155/2020/8829212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Bone remodeling is a process delicately balanced between osteoclastic bone resorption and osteoblastic bone formation. Osteoclasts (OCs) are multinucleated giant cells formed through the fusion of monocytic precursors of the hematopoietic stem cells lineage. OCs are the exclusive cells responsible for the resorption and degradation of the mineralized bone matrix. Pantoprazole (PPZ), a proton pump inhibitor (PPI), is commonly prescribed to reduce excess gastric acid production for conditions such as gastroesophageal reflux disease and peptic ulcer disease. Studies have found contradictory effects of PPI therapy on bone metabolism due to the lack of understanding of the exact underlying mechanism. In this study, we found that PPZ inhibits receptor activator of nuclear factor-κB (NF-κB) ligand- (RANKL-) induced osteoclastogenesis from bone marrow monocytic/macrophage (BMMs) precursors and the bone-resorbing activity of mature OCs. Correspondingly, the expression of OC marker genes was also attenuated. At the molecular level, PPZ treatment was associated with reduced activation of the ERK MAPK signaling pathways crucial to OC differentiation. Additionally, the in vivo administration of PPZ protected mice against lipopolysaccharide- (LPS-) induced inflammatory calvarial bone erosion, as a result of the reduced number and activity of OCs on the calvarial bone surface. Although PPI use is associated with increased risk of osteoporosis and bone fractures, our study provides evidence for the direct inhibitory effect of PPZ on OC formation and bone resorption in vitro and in vivo, suggesting a potential therapeutic use of PPZ in the treatment of osteolytic disease with localized bone destruction.
Collapse
|
4
|
Zeng HB, Dong LQ, Xu C, Zhao XH, Wu LG. Artesunate promotes osteoblast differentiation through miR-34a/DKK1 axis. Acta Histochem 2020; 122:151601. [PMID: 33066846 DOI: 10.1016/j.acthis.2020.151601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Osteoporosis is characterised by impairment of microarchitecture and bone mass. Therapeutic strategy promoting osteoblast differentiation is considered as a promising direction for the treatment of osteoporosis. Artesunate (ART) is related to osteoporosis, but the relationship between ART and osteogenic differentiation is still unknown. METHODS Cells proliferation were measured by MTT, ALP activity assay and Alizarin Red S staining were used to assess osteogenic differentiation of hBMSCs. Western blotting and qRT-PCR were applied for measuring expression of protein and mRNA, respectively. The relationship between miR-34a and Dickkopf-1 (DKK1) was detected by dual luciferase reporter assay. RESULTS The expression of osteoblasts differentiation related proteins (Runx2, OCN, and OPN) were significantly increased by ART. And ART accelerates the osteoblasts differentiation of hBMSCs through promoting Wnt signaling pathway by DKK1 inhibition. Significant higher expression of miR-34a and lower expression of DKK1 could be induced by ART. We firstly proved that miR-34a could bind DKK1 specifically. CONCLUSION ART could promote osteoblast differentiation through miR-34a/DKK1/Wnt pathway. Therefore, our findings may provide a new thought for the treatment of osteoporosis by ART through osteoblast differentiation promotion.
Collapse
Affiliation(s)
- Han-Bing Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang Province, PR China
| | - Li-Qiang Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang Province, PR China
| | - Chao Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang Province, PR China
| | - Xu-Hui Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang Province, PR China
| | - Lian-Guo Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang Province, PR China.
| |
Collapse
|
5
|
Zhang T, Zhao K, Han W, Yang W, Lu X, Liu Q, Li X, Qian Y. Deguelin inhibits RANKL‐induced osteoclastogenesis in vitro and prevents inflammation‐mediated bone loss in vivo. J Cell Physiol 2018; 234:2719-2729. [PMID: 30078209 DOI: 10.1002/jcp.27087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tan Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Kangxian Zhao
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Weiqi Han
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Wanlei Yang
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Xuanyuan Lu
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Qian Liu
- Orthopaedic DepartmentResearch Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Xiucheng Li
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| | - Yu Qian
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou Zhejiang China
- Department of OrthopaedicsShaoxing People's Hospital, Zhejiang University School of Medicine Shaoxing Zhejiang China
| |
Collapse
|
6
|
Wei C, Liu Q, Song F, Lin X, Su Y, Xu J, Huang L, Zong S, Zhao J. Artesunate inhibits RANKL‐induced osteoclastogenesis and bone resorption in vitro and prevents LPS‐induced bone loss in vivo. J Cell Physiol 2017; 233:476-485. [DOI: 10.1002/jcp.25907] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/13/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Cheng‐Ming Wei
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
- Orthopaedic DepartmentThe First Affiliated Hospital of Guangxi Medical UniversityGuangxi Medical UniversityGuangxiChina
- Collaborative Innovation Center of Guangxi Biological MedicineGuangxi Medical UniversityNanningChina
| | - Qian Liu
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
- Orthopaedic DepartmentThe First Affiliated Hospital of Guangxi Medical UniversityGuangxi Medical UniversityGuangxiChina
| | - Fang‐Ming Song
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
| | - Xi‐Xi Lin
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
| | - Yi‐Ji Su
- Collaborative Innovation Center of Guangxi Biological MedicineGuangxi Medical UniversityNanningChina
- Rehabilitation DepartmentThe First Affiliated Hospital of Guangxi Medical UniversityGuangxi Medical UniversityGuangxiChina
| | - Jiake Xu
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
- School of Pathology and Laboratory MedicineThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Lin Huang
- Department of Spine SurgeryDepartment of Orthopedics, Research Center of Spinal and Pelvic TumorSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shao‐Hui Zong
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
- Orthopaedic DepartmentThe First Affiliated Hospital of Guangxi Medical UniversityGuangxi Medical UniversityGuangxiChina
- Collaborative Innovation Center of Guangxi Biological MedicineGuangxi Medical UniversityNanningChina
| | - Jin‐Min Zhao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
- Orthopaedic DepartmentThe First Affiliated Hospital of Guangxi Medical UniversityGuangxi Medical UniversityGuangxiChina
- Collaborative Innovation Center of Guangxi Biological MedicineGuangxi Medical UniversityNanningChina
| |
Collapse
|