1
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Keum BR, Yeo I, Koo Y, Han W, Choi SC, Kim GH, Han JK. Transmembrane protein 150b attenuates BMP signaling in the Xenopus organizer. J Cell Physiol 2023; 238:1850-1866. [PMID: 37435758 DOI: 10.1002/jcp.31059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/13/2023]
Abstract
The vertebrate organizer is a specified embryonic tissue that regulates dorsoventral patterning and axis formation. Although numerous cellular signaling pathways have been identified as regulators of the organizer's dynamic functions, the process remains incompletely understood, and as-yet unknown pathways remain to be explored for sophisticated mechanistic understanding of the vertebrate organizer. To identify new potential key factors of the organizer, we performed complementary DNA (cDNA) microarray screening using organizer-mimicking Xenopus laevis tissue. This analysis yielded a list of prospective organizer genes, and we determined the role of six-transmembrane domain containing transmembrane protein 150b (Tmem150b) in organizer function. Tmem150b was expressed in the organizer region and induced by Activin/Nodal signaling. In X. laevis, Tmem150b knockdown resulted in head defects and a shortened body axis. Moreover, Tmem150b negatively regulated bone morphogenetic protein (BMP) signaling, likely via physical interaction with activin receptor-like kinase 2 (ALK2). These findings demonstrated that Tmem150b functions as a novel membrane regulatory factor of BMP signaling with antagonistic effects, contributing to the understanding of regulatory molecular mechanisms of organizer axis function. Investigation of additional candidate genes identified in the cDNA microarray analysis could further delineate the genetic networks of the organizer during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Byeong-Rak Keum
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- Research Center for drug development, CYPHARMA, Daejeon, Korea
| | - Inchul Yeo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Youngmu Koo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Wonhee Han
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Gun-Hwa Kim
- Research Center for drug development, CYPHARMA, Daejeon, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| |
Collapse
|
3
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
4
|
Yan Y, Wang Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front Cell Dev Biol 2022; 9:799772. [PMID: 35036406 PMCID: PMC8753366 DOI: 10.3389/fcell.2021.799772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most significant events during early embryonic development is the establishment of a basic embryonic body plan, which is defined by anteroposterior, dorsoventral (DV), and left-right axes. It is well-known that the morphogen gradient created by BMP signaling activity is crucial for DV axis patterning across a diverse set of vertebrates. The regulation of BMP signaling during DV patterning has been strongly conserved across evolution. This is a remarkable regulatory and evolutionary feat, as the BMP gradient has been maintained despite the tremendous variation in embryonic size and shape across species. Interestingly, the embryonic DV axis exhibits robust stability, even in face of variations in BMP signaling. Multiple lines of genetic, molecular, and embryological evidence have suggested that numerous BMP signaling components and their attendant regulators act in concert to shape the developing DV axis. In this review, we summarize the current knowledge of the function and regulation of BMP signaling in DV patterning. Throughout, we focus specifically on popular model animals, such as Xenopus and zebrafish, highlighting the similarities and differences of the regulatory networks between species. We also review recent advances regarding the molecular nature of DV patterning, including the initiation of the DV axis, the formation of the BMP gradient, and the regulatory molecular mechanisms behind BMP signaling during the establishment of the DV axis. Collectively, this review will help clarify our current understanding of the molecular nature of DV axis formation.
Collapse
Affiliation(s)
- Yifang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Pechmann M, Kenny NJ, Pott L, Heger P, Chen YT, Buchta T, Özüak O, Lynch J, Roth S. Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network. eLife 2021; 10:e68287. [PMID: 33783353 PMCID: PMC8051952 DOI: 10.7554/elife.68287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Dorsoventral pattering relies on Toll and BMP signalling in all insects studied so far, with variations in the relative contributions of both pathways. Drosophila and the beetle Tribolium share extensive dependence on Toll, while representatives of more distantly related lineages like the wasp Nasonia and bug Oncopeltus rely more strongly on BMP signalling. Here, we show that in the cricket Gryllus bimaculatus, an evolutionarily distant outgroup, Toll has, like in Drosophila, a direct patterning role for the ventral half of the embryo. In addition, Toll polarises BMP signalling, although this does not involve the conserved BMP inhibitor Sog/Chordin. Finally, Toll activation relies on ovarian patterning mechanisms with striking similarity to Drosophila. Our data suggest two surprising hypotheses: (1) that Toll's patterning function in Gryllus and Drosophila is the result of convergent evolution or (2) a Drosophila-like system arose early in insect evolution and was extensively altered in multiple independent lineages.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | | | - Laura Pott
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Peter Heger
- Regional Computing Centre (RRZK), University of CologneKölnGermany
| | - Yen-Ta Chen
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Thomas Buchta
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Orhan Özüak
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| | - Jeremy Lynch
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
- Department of Biological Sciences, University of Illinois at ChicagoChicagoUnited States
| | - Siegfried Roth
- Institute for Zoology/Developmental Biology, Biocenter, University of CologneKölnGermany
| |
Collapse
|
6
|
Castro Colabianchi AM, Tavella MB, Boyadjián López LE, Rubinstein M, Franchini LF, López SL. Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage. Biol Open 2021; 10:bio.051797. [PMID: 33563608 PMCID: PMC7928228 DOI: 10.1242/bio.051797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The blastula Chordin- and Noggin-expressing (BCNE) center comprises animal-dorsal and marginal-dorsal cells of the amphibian blastula and contains the precursors of the brain and the gastrula organizer. Previous findings suggested that the BCNE behaves as a homogeneous cell population that only depends on nuclear β-catenin activity but does not require Nodal and later segregates into its descendants during gastrulation. In contrast to previous findings, in this work, we show that the BCNE does not behave as a homogeneous cell population in response to Nodal antagonists. In fact, we found that chordin.1 expression in a marginal subpopulation of notochordal precursors indeed requires Nodal input. We also establish that an animal BCNE subpopulation of cells that express both, chordin.1 and sox2 (a marker of pluripotent neuroectodermal cells), and gives rise to most of the brain, persisted at blastula stage after blocking Nodal. Therefore, Nodal signaling is required to define a population of chordin.1+ cells and to restrict the recruitment of brain precursors within the BCNE as early as at blastula stage. We discuss our findings in Xenopus in comparison to other vertebrate models, uncovering similitudes in early brain induction and delimitation through Nodal signaling. This article has an associated First Person interview with the first author of the paper. Summary: Nodal signaling is involved in the delimitation of the blastula cell populations that give rise to the brain and axial mesoderm in Xenopus.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina.,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - María B Tavella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Laura E Boyadjián López
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina.,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina
| | - Silvia L López
- Universidad de Buenos Aires. Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires 1121, Argentina .,CONICET - Universidad de Buenos Aires. Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| |
Collapse
|
7
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
8
|
Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A. Natural size variation among embryos leads to the corresponding scaling in gene expression. Dev Biol 2020; 462:165-179. [PMID: 32259520 PMCID: PMC8073595 DOI: 10.1016/j.ydbio.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
Xenopus laevis frogs from laboratory stocks normally lay eggs exhibiting extensive size variability. We find that these initial size differences subsequently affect the size of the embryos prior to the onset of growth, and the size of tadpoles during the growth period. Even though these tadpoles differ in size, their tissues, organs, and structures always seem to be properly proportioned, i.e. they display static allometry. Initial axial patterning events in Xenopus occur in a spherical embryo, allowing easy documentation of their size-dependent features. We examined the size distribution of early Xenopus laevis embryos and measured diameters that differed by about 38% with a median of about 1.43 mm. This range of embryo sizes corresponds to about a 1.9-fold difference in surface area and a 2.6-fold difference in volume. We examined the relationship between embryo size and gene expression and observed a significant correlation between diameter and RNA content during gastrula stages. In addition, we investigated the expression levels of genes that pattern the mesoderm, induce the nervous system and mediate the progression of ectodermal cells to neural precursors in large and small embryos. We found that most of these factors were expressed at levels that scaled with the different embryo sizes and total embryo RNA content. In agreement with the changes in transcript levels, the expression domains in larger embryos increased proportionally with the increase in surface area, maintaining their relative expression domain size in relation to the total size of the embryo. Thus, our study identified a mechanism for adapting gene expression domains to embryo size by adjusting the transcript levels of the genes regulating mesoderm induction and patterning. In the neural plate, besides the scaling of the expression domains, we observed similar cell sizes and cell densities in small and large embryos suggesting that additional cell divisions took place in large embryos to compensate for the increased size. Our results show in detail the size variability among Xenopus laevis embryos and the transcriptional adaptation to scale gene expression with size. The observations further support the involvement of BMP/ADMP signaling in the scaling process.
Collapse
Affiliation(s)
- Avi Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Steven L Klein
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
9
|
Matsumura KD, Nakamura MJ, Koizumi WC, Hotta K, Oka K. Different strategies for tissue scaling in dwarf tailbud embryos revealed by single-cell analysis. Dev Biol 2020; 460:215-223. [PMID: 31981562 DOI: 10.1016/j.ydbio.2020.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
The tailbud stage is part of the organogenesis period-an evolutionarily conserved developmental period among chordates that is essential for determining the characteristics of the chordate body plan. When the volume of the egg is artificially decreased by cutting, ascidians produce a normal-looking but miniature (dwarf) tailbud embryo. Although cell lineages during ascidian embryogenesis are invariant, the number of cell divisions in the dwarf embryo is altered by a different mechanism in each tissue (Yamada and Nishida, 1999). Here, to elucidate the size-regulation strategies of the Ciona robusta dwarf tailbud embryo, we compared anatomical structure, developmental speed, and cell number/volume in each tissue between dwarf and wild type (WT) embryos. To do this, we constructed a 3D virtual mid-tailbud embryo (Nakamura et al., 2012). We could make a Ciona dwarf tailbud embryo from eggs with a diameter over 108 μm (correspond to > 40% of the wild type egg volume). The timings of cleavage (~St. 12) and subsequent morphogenesis were nearly the same but blastomeres of animal hemisphere slightly delayed the timing of mitosis in the early cleavage period. Intriguingly, the tissue-to-tissue volume ratios of dwarf tailbud embryos were similar to those of wild type embryos suggesting that the ratio of tissue volumes is essential for maintaining the proper shape of the tailbud embryo. The number of cells in the epidermis, nervous system, and mesenchyme was significantly reduced in the dwarf embryos whereas the cell volume distribution of these tissues was similar in the dwarf and wild type. In contrast, the number of cells in the notochord, muscle, heart, and endoderm were maintained in the dwarf embryos; cell volumes were significantly reduced. Neither parameter changed in germline precursors. These results indicate that each tissue uses different scaling strategies to coordinate cell number and cell volume in accordance with the embryo size.
Collapse
Affiliation(s)
- Kaoru D Matsumura
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Mitsuru J Nakamura
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan; Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Wataru C Koizumi
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan.
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo, 162-8480, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| |
Collapse
|