1
|
Ablat G, Lawton N, Alam R, Haynes BA, Hossain S, Hicks T, Evans SL, Jarvis JA, Nott TJ, Isaacson RL, Müller MM. Kinetic Resolution of Epimeric Proteins Enables Stereoselective Chemical Mutagenesis. J Am Chem Soc 2024; 146:22622-22628. [PMID: 39083370 PMCID: PMC11328163 DOI: 10.1021/jacs.4c07103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Chemical mutagenesis via dehydroalanine (Dha) is a powerful method to tailor protein structure and function, allowing the site-specific installation of post-translational modifications and non-natural functional groups. Despite the impressive versatility of this method, applications have been limited, as products are formed as epimeric mixtures, whereby the modified amino acid is present as both the desired l-configuration and a roughly equal amount of the undesired d-isomer. Here, we describe a simple remedy for this issue: removal of the d-isomer via proteolysis using a d-stereoselective peptidase, alkaline d-peptidase (AD-P). We demonstrate that AD-P can selectively cleave the d-isomer of epimeric residues within histone H3, GFP, Ddx4, and SGTA, allowing the installation of non-natural amino acids with stereochemical control. Given the breadth of modifications that can be introduced via Dha and the simplicity of our method, we believe that stereoselective chemoenzymatic mutagenesis will find broad utility in protein engineering and chemical biology applications.
Collapse
Affiliation(s)
- Guljannat Ablat
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Neev Lawton
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Ruqaiya Alam
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Bethany A Haynes
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Sabrina Hossain
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Thomas Hicks
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Sasha L Evans
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - James A Jarvis
- Randall Centre for Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, King's College London, New Hunts House, London SE1 1UL, U.K
| | - Timothy J Nott
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Rivka L Isaacson
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Manuel M Müller
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
2
|
Cho H, Liu Y, Chung S, Chandrasekar S, Weiss S, Shan SO. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad. Nat Commun 2024; 15:134. [PMID: 38167697 PMCID: PMC10761869 DOI: 10.1038/s41467-023-44260-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Membrane protein biogenesis poses acute challenges to protein homeostasis, and how they are selectively escorted to the target membrane is not well understood. Here we address this question in the guided-entry-of-tail-anchored protein (GET) pathway, in which tail-anchored membrane proteins (TAs) are relayed through an Hsp70-Sgt2-Get3 chaperone triad for targeting to the endoplasmic reticulum. We show that the Hsp70 ATPase cycle and TA substrate drive dimeric Sgt2 from a wide-open conformation to a closed state, in which TAs are protected by both substrate binding domains of Sgt2. Get3 is privileged to receive TA from closed Sgt2, whereas off-pathway chaperones remove TAs from open Sgt2. Sgt2 closing is less favorable with suboptimal GET substrates, which are rejected during or after the Hsp70-to-Sgt2 handover. Our results demonstrate how fine-tuned conformational dynamics in Sgt2 enable hydrophobic TAs to be effectively funneled onto their dedicated targeting factor while also providing a mechanism for substrate selection.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
3
|
Hill J, Nyathi Y. USP5 enhances SGTA mediated protein quality control. PLoS One 2022; 17:e0257786. [PMID: 35895711 PMCID: PMC9328565 DOI: 10.1371/journal.pone.0257786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Mislocalised membrane proteins (MLPs) present a risk to the cell due to exposed hydrophobic amino acids which cause MLPs to aggregate. Previous studies identified SGTA as a key component of the machinery that regulates the quality control of MLPs. Overexpression of SGTA promotes deubiqutination of MLPs resulting in their accumulation in cytosolic inclusions, suggesting SGTA acts in collaboration with deubiquitinating enzymes (DUBs) to exert these effects. However, the DUBs that play a role in this process have not been identified. In this study we have identified the ubiquitin specific peptidase 5 (USP5) as a DUB important in regulating the quality control of MLPs. We show that USP5 is in complex with SGTA, and this association is increased in the presence of an MLP. Overexpression of SGTA results in an increase in steady-state levels of MLPs suggesting a delay in proteasomal degradation of substrates. However, our results show that this effect is strongly dependent on the presence of USP5. We find that in the absence of USP5, the ability of SGTA to increase the steady state levels of MLPs is compromised. Moreover, knockdown of USP5 results in a reduction in the steady state levels of MLPs, while overexpression of USP5 increases the steady state levels. Our findings suggest that the interaction of SGTA with USP5 enables specific MLPs to escape proteasomal degradation allowing selective modulation of MLP quality control. These findings progress our understanding of aggregate formation, a hallmark in a range of neurodegenerative diseases and type II diabetes, as well as physiological processes of aggregate clearance.
Collapse
Affiliation(s)
- Jake Hill
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Yvonne Nyathi
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Roboti P, Lawless C, High S. Mitochondrial antiviral-signalling protein is a client of the BAG6 protein quality control complex. J Cell Sci 2022; 135:275354. [PMID: 35543156 PMCID: PMC9264363 DOI: 10.1242/jcs.259596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric BAG6 complex coordinates the direct handover of newly synthesised tail-anchored (TA) membrane proteins from an SGTA-bound preloading complex to the endoplasmic reticulum (ER) delivery component TRC40. In contrast, defective precursors, including aberrant TA proteins, form a stable complex with this cytosolic protein quality control factor, enabling such clients to be either productively re-routed or selectively degraded. We identify the mitochondrial antiviral-signalling protein (MAVS) as an endogenous TA client of both SGTA and the BAG6 complex. Our data suggest that the BAG6 complex binds to a cytosolic pool of MAVS before its misinsertion into the ER membrane, from where it can subsequently be removed via ATP13A1-mediated dislocation. This BAG6-associated fraction of MAVS is dynamic and responds to the activation of an innate immune response, suggesting that BAG6 may modulate the pool of MAVS that is available for coordinating the cellular response to viral infection. Summary: Mitochondrial antiviral-signalling protein (MAVS) is a favoured client of the cytosolic BAG6 complex. We discuss how this dynamic interaction may modulate MAVS biogenesis at signalling membranes.
Collapse
Affiliation(s)
- Peristera Roboti
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
6
|
Huang X, Weng F, Wei Z, Kamruzzaman M. Application and research of robot sorting system based on LabVIEW. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sorting robot is a kind of artificial intelligence robot which has certain sense ability and can classify items. In the sorting industry, its appearance not only reduces the labor input, but also improves the production efficiency of the sorting industry. In this paper, a production line composed of linear Delta robot and 3-DOF robot is studied. The forward and inverse solutions are calculated by MATLAB and simulated by Solid Works. Through the visual processing function, communication function and axle card driving function of Lab VIEW software, the servo motor rotation is controlled to achieve the purpose of the end moving along the predetermined trajectory, and finally the visual sorting function is realized.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Mechanical and Electrical Engineering, Nanning University, Nanning, China
| | - Fangyi Weng
- Guangxi Quality Technical Engineering School, Nanning, China
| | - Zhongxin Wei
- Guangxi Quality Technical Engineering School, Nanning, China
| | - M.M. Kamruzzaman
- Department of Computer and Information Science, Jouf University, Sakaka, Al Jouf, KSA
| |
Collapse
|
7
|
SGTA associates with intracellular aggregates in neurodegenerative diseases. Mol Brain 2021; 14:59. [PMID: 33757575 PMCID: PMC7986274 DOI: 10.1186/s13041-021-00770-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Intracellular aggregates are a common pathological hallmark of neurodegenerative diseases such as polyglutamine (polyQ) diseases, amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple system atrophy (MSA). Aggregates are mainly formed by aberrant disease-specific proteins and are accompanied by accumulation of other aggregate-interacting proteins. Although aggregate-interacting proteins have been considered to modulate the formation of aggregates and to be involved in molecular mechanisms of disease progression, the components of aggregate-interacting proteins remain unknown. In this study, we showed that small glutamine-rich tetratricopeptide repeat-containing protein alfa (SGTA) is an aggregate-interacting protein in neurodegenerative diseases. Immunohistochemistry showed that SGTA interacted with intracellular aggregates in Huntington disease (HD) cell models and neurons of HD model mice. We also revealed that SGTA colocalized with intracellular aggregates in postmortem brains of patients with polyQ diseases including spinocerebellar ataxia (SCA)1, SCA2, SCA3, and dentatorubral–pallidoluysian atrophy. In addition, SGTA colocalized with glial cytoplasmic inclusions in the brains of MSA patients, whereas no accumulation of SGTA was observed in neurons of PD and ALS patients. In vitro study showed that SGTA bound to polyQ aggregates through its C-terminal domain and SGTA overexpression reduced intracellular aggregates. These results suggest that SGTA may play a role in the formation of aggregates and may act as potential modifier of molecular pathological mechanisms of polyQ diseases and MSA.
Collapse
|
8
|
Lin KF, Fry MY, Saladi SM, Clemons WM. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J Biol Chem 2021; 296:100441. [PMID: 33610544 PMCID: PMC8010706 DOI: 10.1016/j.jbc.2021.100441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023] Open
Abstract
The targeting and insertion of tail-anchored (TA) integral membrane proteins (IMPs) into the correct membrane is critical for cellular homeostasis. The fungal protein Sgt2, and its human homolog SGTA, is the entry point for clients to the guided entry of tail-anchored protein (GET) pathway, which targets endoplasmic reticulum-bound TA IMPs. Consisting of three structurally independent domains, the C terminus of Sgt2 binds to the hydrophobic transmembrane domain (TMD) of clients. However, the exact binding interface within Sgt2 and molecular details that underlie its binding mechanism and client preference are not known. Here, we reveal the mechanism of Sgt2 binding to hydrophobic clients, including TA IMPs. Through sequence analysis, biophysical characterization, and a series of capture assays, we establish that the Sgt2 C-terminal domain is flexible but conserved and sufficient for client binding. A molecular model for this domain reveals a helical hand forming a hydrophobic groove approximately 15 Å long that is consistent with our observed higher affinity for client TMDs with a hydrophobic face and a minimal length of 11 residues. This work places Sgt2 into a broader family of TPR-containing cochaperone proteins, demonstrating structural and sequence-based similarities to the DP domains in the yeast Hsp90 and Hsp70 coordinating protein, Sti1.
Collapse
Affiliation(s)
- Ku-Feng Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Michelle Y Fry
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Shyam M Saladi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
9
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|