1
|
Cornetti L, Fields PD, Du Pasquier L, Ebert D. Long-term balancing selection for pathogen resistance maintains trans-species polymorphisms in a planktonic crustacean. Nat Commun 2024; 15:5333. [PMID: 38909039 PMCID: PMC11193740 DOI: 10.1038/s41467-024-49726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Balancing selection is an evolutionary process that maintains genetic polymorphisms at selected loci and strongly reduces the likelihood of allele fixation. When allelic polymorphisms that predate speciation events are maintained independently in the resulting lineages, a pattern of trans-species polymorphisms may occur. Trans-species polymorphisms have been identified for loci related to mating systems and the MHC, but they are generally rare. Trans-species polymorphisms in disease loci are believed to be a consequence of long-term host-parasite coevolution by balancing selection, the so-called Red Queen dynamics. Here we scan the genomes of three crustaceans with a divergence of over 15 million years and identify 11 genes containing identical-by-descent trans-species polymorphisms with the same polymorphisms in all three species. Four of these genes display molecular footprints of balancing selection and have a function related to immunity. Three of them are located in or close to loci involved in resistance to a virulent bacterial pathogen, Pasteuria, with which the Daphnia host is known to coevolve. This provides rare evidence of trans-species polymorphisms for loci known to be functionally relevant in interactions with a widespread and highly specific parasite. These findings support the theory that specific antagonistic coevolution is able to maintain genetic diversity over millions of years.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Louis Du Pasquier
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Huessy B, Bumann D, Ebert D. Ectopical expression of bacterial collagen-like protein supports its role as adhesin in host-parasite coevolution. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231441. [PMID: 38577215 PMCID: PMC10987987 DOI: 10.1098/rsos.231441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
For a profound understanding of antagonistic coevolution, it is necessary to identify the coevolving genes. The bacterium Pasteuria and its host, the microcrustacean Daphnia, are a well-characterized paradigm for co-evolution, but the underlying genes remain largely unknown. A genome-wide association study suggested a Pasteuria collagen-like protein 7 (Pcl7) as a candidate mediating parasite attachment and driving its coevolution with the host. Since Pasteuria ramosa cannot currently be genetically manipulated, we used Bacillus thuringiensis to express a fusion protein of a Pcl7 carboxy-terminus from P. ramosa and the amino-terminal domain of a B. thuringiensis collagen-like protein (CLP). Mutant B. thuringiensis (Pcl7-Bt) spores but not wild-type B. thuringiensis (WT-Bt) spores attached to the same site of susceptible hosts as P. ramosa. Furthermore, Pcl7-Bt spores attached readily to susceptible host genotypes, but only slightly to resistant host genotypes. These findings indicated that the fusion protein was properly expressed and folded and demonstrated that indeed the C-terminus of Pcl7 mediates attachment in a host genotype-specific manner. These results provide strong evidence for the involvement of a CLP in the coevolution of Daphnia and P. ramosa and open new avenues for genetic epidemiological studies of host-parasite interactions.
Collapse
Affiliation(s)
- Benjamin Huessy
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
- University of Basel, Basel4056, Switzerland
| | | | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel4051, Switzerland
| |
Collapse
|
3
|
McGale E, Sanders IR. Integrating plant and fungal quantitative genetics to improve the ecological and agricultural applications of mycorrhizal symbioses. Curr Opin Microbiol 2022; 70:102205. [PMID: 36201974 DOI: 10.1016/j.mib.2022.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Finding and targeting genes that quantitatively contribute to agricultural and ecological processes progresses food production and conservation efforts. Typically, quantitative genetic approaches link variants in a single organism's genome with a trait of interest. Recently, genome-to-genome mapping has found genome variants interacting between species to produce the result of a multiorganism (including multikingdom) interaction. These were plant and bacterial pathogen genome interactions; plant-fungal coquantitative genetics have not yet been applied. Plant-mycorrhizae symbioses exist across most biomes, for a majority of land plants, including crop plants, and manipulate many traits from single organisms to ecosystems for which knowing the genetic basis would be useful. The availability of Rhizophagus irregularis mycorrhizal isolates, with genomic information, makes dual-genome methods with beneficial mutualists accessible and imminent.
Collapse
Affiliation(s)
- Erica McGale
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Liu M, Wang Q, Liu H, Yin C, Mijiti X, Anwaierjiang A, Wan K, Xu M, Li M, Nong S, Li G, Xiao H. Association of Mannose-Binding Lectin 2 Gene Polymorphism with Tuberculosis Based on Mycobacterium tuberculosis Lineages. Infect Drug Resist 2022; 15:1225-1234. [PMID: 35355619 PMCID: PMC8959721 DOI: 10.2147/idr.s344935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Polymorphisms in MBL2 may contribute to the susceptibility to tuberculosis. The aim of the present study was to determine the associations of the polymorphisms of five loci (rs1800450, rs1800451, rs7096206, rs7095891, and rs11003125) in the MBL2 gene with susceptibility to tuberculosis and specific lineages of Mycobacterium tuberculosis causing tuberculosis in the Uyghur population of Xinjiang, China. Methods From January 2019 to January 2020, we enrolled 170 Uyghur tuberculosis patients as the case group and 147 Uyghur staff with no clinical symptoms as the control group from four designated tuberculosis hospitals in southern Xinjiang, China. The polymorphisms of five loci in MBL2 of human were detected by sequencing. Whole-genome sequencing was applied in 68 M. tuberculosis isolates from the case group and the data were used to perform genealogy analysis. Results The distributions of allele and genotype frequencies of five loci in MBL2 varied little between the case and control groups and varied little among the groups, including those infected with different lineages of M. tuberculosis and the control (except those of rs11003125), the P values were all >0.05. The distribution of alleles of rs11003125 was statistically different between patients infected with lineages 3 and 4 M. tuberculosis (χ2=7.037, P=0.008). The C allele and CC genotype of rs11003125 were found to be protective factors against lineage 4 infection when compared to lineage 3 (ORs were 0.190 and 0.158, respectively; 95% confidence intervals were 0.053~0.690 and 0.025~0.999, respectively). Conclusion Our results suggested that human’s susceptibility to tuberculosis is affected both by the host genetic polymorphisms and the lineage of the M. tuberculosis that people were exposed to. However, due to the limitation of the sample size in the present study, larger sample size and more rigorous design should be guaranteed in future studies.
Collapse
Affiliation(s)
- Mengwen Liu
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Quan Wang
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830001, People’s Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Chunjie Yin
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xiaokaiti Mijiti
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830001, People’s Republic of China
| | - Aiketaguli Anwaierjiang
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Miao Xu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830001, People’s Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Siqin Nong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
- Correspondence: Guilian Li; Hui Xiao, Email ;
| | - Hui Xiao
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| |
Collapse
|
5
|
Andras JP, Fields PD, Du Pasquier L, Fredericksen M, Ebert D. Genome-Wide Association Analysis Identifies a Genetic Basis of Infectivity in a Model Bacterial Pathogen. Mol Biol Evol 2021; 37:3439-3452. [PMID: 32658956 PMCID: PMC7743900 DOI: 10.1093/molbev/msaa173] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Knowledge of the genetic architecture of pathogen infectivity and host resistance is essential for a mechanistic understanding of coevolutionary processes, yet the genetic basis of these interacting traits remains unknown for most host-pathogen systems. We used a comparative genomic approach to explore the genetic basis of infectivity in Pasteuria ramosa, a Gram-positive bacterial pathogen of planktonic crustaceans that has been established as a model for studies of Red Queen host-pathogen coevolution. We sequenced the genomes of a geographically, phenotypically, and genetically diverse collection of P. ramosa strains and performed a genome-wide association study to identify genetic correlates of infection phenotype. We found multiple polymorphisms within a single gene, Pcl7, that correlate perfectly with one common and widespread infection phenotype. We then confirmed this perfect association via Sanger sequencing in a large and diverse sample set of P. ramosa clones. Pcl7 codes for a collagen-like protein, a class of adhesion proteins known or suspected to be involved in the infection mechanisms of a number of important bacterial pathogens. Consistent with expectations under Red Queen coevolution, sequence variation of Pcl7 shows evidence of balancing selection, including extraordinarily high diversity and absence of geographic structure. Based on structural homology with a collagen-like protein of Bacillus anthracis, we propose a hypothesis for the structure of Pcl7 and the physical location of the phenotype-associated polymorphisms. Our results offer strong evidence for a gene governing infectivity and provide a molecular basis for further study of Red Queen dynamics in this model host-pathogen system.
Collapse
Affiliation(s)
- Jason P Andras
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA
| | - Peter D Fields
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Louis Du Pasquier
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Maridel Fredericksen
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Dieter Ebert
- Division of Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Ebert D, Fields PD. Host-parasite co-evolution and its genomic signature. Nat Rev Genet 2020; 21:754-768. [PMID: 32860017 DOI: 10.1038/s41576-020-0269-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 01/14/2023]
Abstract
Studies in diverse biological systems have indicated that host-parasite co-evolution is responsible for the extraordinary genetic diversity seen in some genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates and resistance genes in plants. This diversity is believed to evolve under balancing selection on hosts by parasites. However, the mechanisms that link the genomic signatures in these regions to the underlying co-evolutionary process are only slowly emerging. We still lack a clear picture of the co-evolutionary concepts and of the genetic basis of the co-evolving phenotypic traits in the interacting antagonists. Emerging genomic tools that provide new options for identifying underlying genes will contribute to a fuller understanding of the co-evolutionary process.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland. .,Wissenschaftskolleg zu Berlin, Berlin, Germany.
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|