1
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2025; 41:76-98. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
2
|
Fraser R, Moraa R, Djolai A, Meisenheimer N, Laube S, Vicoso B, Huylmans AK. Evidence for a Novel X Chromosome in Termites. Genome Biol Evol 2024; 16:evae265. [PMID: 39658246 DOI: 10.1093/gbe/evae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Termites, together with cockroaches, belong to the Blattodea. They possess an XX/XY sex determination system which has evolved from an XX/X0 system present in other Blattodean species, such as cockroaches and wood roaches. Little is currently known about the sex chromosomes of termites, their gene content, or their evolution. We here investigate the X chromosome of multiple termite species and compare them with the X chromosome of cockroaches using genomic and transcriptomic data. We find that the X chromosome of the termite Macrotermes natalensis is large and differentiated showing hall marks of sex chromosome evolution such as dosage compensation, while this does not seem to be the case in the other two termite species investigated here where sex chromosomes may be evolutionary younger. Furthermore, the X chromosome in M. natalensis is different from the X chromosome found in the cockroach Blattella germanica indicating that sex chromosome turn-over events may have happened during termite evolution.
Collapse
Affiliation(s)
- Roxanne Fraser
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Ruth Moraa
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Annika Djolai
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Nils Meisenheimer
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Sophie Laube
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400 Austria
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400 Austria
- Institute for Quantitative and Computational Biosciences (IQCB), Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, Mainz 55128, Germany
| |
Collapse
|
3
|
Jankásek M, Kočárek P, Št’áhlavský F. Comparative cytogenetics of three Zoraptera species as a basis for understanding chromosomal evolution in Polyneoptera insects. PeerJ 2024; 12:e18051. [PMID: 39399435 PMCID: PMC11471171 DOI: 10.7717/peerj.18051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
Zoraptera (also called "angel insects") is one of the most unexplored insect orders. However, it holds promise for understanding the evolution of insect karyotypes and genome organization given its status as an early branching group of Polyneoptera and Pterygota (winged insects) during the Paleozoic. Here, we provide karyotype descriptions of three Zorapteran species: Brazilozoros huxleyi (2n♂; ♀ = 42; 42), B. kukalovae (2n♂; ♀ = 43; 44) and Latinozoros cacaoensis (2n♂; ♀ = 36; 36). These species represent two of the four recently recognized Zorapteran subfamilies. Contrary to an earlier suggestion that Zoraptera has holocentric chromosomes, we found karyotypes that were always monocentric. Interestingly, we detected both X0 (B. kukalovae) and XY (B. huxleyi, L. cacaoensis) sex chromosome systems. In addition to conventional karyotype descriptions, we applied fluorescent in situ hybridization for the first time in Zoraptera to map karyotype distributions of 18S rDNA, histone H3 genes, telomeres and (CAG)n and (GATA)n microsatellites. This study provides a foundation for cytogenetic research in Zoraptera.
Collapse
Affiliation(s)
- Marek Jankásek
- Department of Zoology, Charles University Prague, Praha 2, Czech Republic
| | - Petr Kočárek
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | | |
Collapse
|
4
|
Li X, Mank JE, Ban L. The grasshopper genome reveals long-term gene content conservation of the X Chromosome and temporal variation in X Chromosome evolution. Genome Res 2024; 34:997-1007. [PMID: 39103228 PMCID: PMC11368200 DOI: 10.1101/gr.278794.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/02/2024] [Indexed: 08/07/2024]
Abstract
We present the first chromosome-level genome assembly of the grasshopper, Locusta migratoria, one of the largest insect genomes. We use coverage differences between females (XX) and males (X0) to identify the X Chromosome gene content, and find that the X Chromosome shows both complete dosage compensation in somatic tissues and an underrepresentation of testis-expressed genes. X-linked gene content from L. migratoria is highly conserved across seven insect orders, namely Orthoptera, Odonata, Phasmatodea, Hemiptera, Neuroptera, Coleoptera, and Diptera, and the 800 Mb grasshopper X Chromosome is homologous to the fly ancestral X Chromosome despite 400 million years of divergence, suggesting either repeated origin of sex chromosomes with highly similar gene content, or long-term conservation of the X Chromosome. We use this broad conservation of the X Chromosome to test for temporal dynamics to Fast-X evolution, and find evidence of a recent burst evolution for new X-linked genes in contrast to slow evolution of X-conserved genes.
Collapse
Affiliation(s)
- Xinghua Li
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Liping Ban
- Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Jin J, Zhan Z, Wei X, Pan Z, Zhao Y, Yu D, Zhang F. Genomic insights into the chromosomal elongation in a family of Collembola. Proc Biol Sci 2024; 291:20232937. [PMID: 38471545 PMCID: PMC10932724 DOI: 10.1098/rspb.2023.2937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Collembola is a highly diverse and abundant group of soil arthropods with chromosome numbers ranging from 5 to 11. Previous karyotype studies indicated that the Tomoceridae family possesses an exceptionally long chromosome. To better understand chromosome size evolution in Collembola, we obtained a chromosome-level genome of Yoshiicerus persimilis with a size of 334.44 Mb and BUSCO completeness of 97.0% (n = 1013). Both genomes of Y. persimilis and Tomocerus qinae (recently published) have an exceptionally large chromosome (ElChr greater than 100 Mb), accounting for nearly one-third of the genome. Comparative genomic analyses suggest that chromosomal elongation occurred independently in the two species approximately 10 million years ago, rather than in the ancestor of the Tomoceridae family. The ElChr elongation was caused by large tandem and segmental duplications, as well as transposon proliferation, with genes in these regions experiencing weaker purifying selection (higher dN/dS) than conserved regions. Moreover, inter-genomic synteny analyses indicated that chromosomal fission/fusion events played a crucial role in the evolution of chromosome numbers (ranging from 5 to 7) within Entomobryomorpha. This study provides a valuable resource for investigating the chromosome evolution of Collembola.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhihong Zhan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiping Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhixiang Pan
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Yuxin Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Daoyuan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
6
|
Sylvester T, Adams R, Hunter WB, Li X, Rivera-Marchand B, Shen R, Shin NR, McKenna DD. The genome of the invasive and broadly polyphagous Diaprepes root weevil, Diaprepes abbreviatus (Coleoptera), reveals an arsenal of putative polysaccharide-degrading enzymes. J Hered 2024; 115:94-102. [PMID: 37878740 DOI: 10.1093/jhered/esad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
The Diaprepes root weevil (DRW), Diaprepes abbreviatus, is a broadly polyphagous invasive pest of agriculture in the southern United States and the Caribbean. Its genome was sequenced, assembled, and annotated to study genomic correlates of specialized plant-feeding and invasiveness and to facilitate the development of new methods for DRW control. The 1.69 Gb D. abbreviatus genome assembly was distributed across 653 contigs, with an N50 of 7.8 Mb and the largest contig of 62 Mb. Most of the genome was comprised of repetitive sequences, with 66.17% in transposable elements, 5.75% in macrosatellites, and 2.06% in microsatellites. Most expected orthologous genes were present and fully assembled, with 99.5% of BUSCO genes present and 1.5% duplicated. One hundred and nine contigs (27.19 Mb) were identified as putative fragments of the X and Y sex chromosomes, and homology assessment with other beetle X chromosomes indicated a possible sex chromosome turnover event. Genome annotation identified 18,412 genes, including 43 putative horizontally transferred (HT) loci. Notably, 258 genes were identified from gene families known to encode plant cell wall degrading enzymes and invertases, including carbohydrate esterases, polysaccharide lyases, and glycoside hydrolases (GH). GH genes were unusually numerous, with 239 putative genes representing 19 GH families. Interestingly, several other beetle species with large numbers of GH genes are (like D. abbreviatus) successful invasive pests of agriculture or forestry.
Collapse
Affiliation(s)
- Terrence Sylvester
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Richard Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR, United States
| | - Wayne B Hunter
- USDA, ARS, U. S. Horticultural Research Laboratory, Fort Pierce, FL 34945, United States
| | - Xuankun Li
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Bert Rivera-Marchand
- Office of Academic Affairs, Polk State College, Lakeland Campus, Lakeland, FL, 33803, United States
| | - Rongrong Shen
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Na Ra Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
7
|
Lasne C, Elkrewi M, Toups MA, Layana L, Macon A, Vicoso B. The Scorpionfly (Panorpa cognata) Genome Highlights Conserved and Derived Features of the Peculiar Dipteran X Chromosome. Mol Biol Evol 2023; 40:msad245. [PMID: 37988296 PMCID: PMC10715201 DOI: 10.1093/molbev/msad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Many insects carry an ancient X chromosome-the Drosophila Muller element F-that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 My. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure to that of several dipteran species as well as more distantly related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the 2 homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects.
Collapse
Affiliation(s)
- Clementine Lasne
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Marwan Elkrewi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Melissa A Toups
- Department of Life and Environmental Sciences, Bournemouth University, Poole, UK
| | - Lorena Layana
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
8
|
Knyshov A, Gordon ERL, Masonick PK, Castillo S, Forero D, Hoey-Chamberlain R, Hwang WS, Johnson KP, Lemmon AR, Moriarty Lemmon E, Standring S, Zhang J, Weirauch C. Chromosome-Aware Phylogenomics of Assassin Bugs (Hemiptera: Reduvioidea) Elucidates Ancient Gene Conflict. Mol Biol Evol 2023; 40:msad168. [PMID: 37494292 PMCID: PMC10411492 DOI: 10.1093/molbev/msad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Though the phylogenetic signal of loci on sex chromosomes can differ from those on autosomes, chromosomal-level genome assemblies for nonvertebrates are still relatively scarce and conservation of chromosomal gene content across deep phylogenetic scales has therefore remained largely unexplored. We here assemble a uniquely large and diverse set of samples (17 anchored hybrid enrichment, 24 RNA-seq, and 70 whole-genome sequencing samples of variable depth) for the medically important assassin bugs (Reduvioidea). We assess the performance of genes based on multiple features (e.g., nucleotide vs. amino acid, nuclear vs. mitochondrial, and autosomal vs. X chromosomal) and employ different methods (concatenation and coalescence analyses) to reconstruct the unresolved phylogeny of this diverse (∼7,000 spp.) and old (>180 Ma) group. Our results show that genes on the X chromosome are more likely to have discordant phylogenies than those on autosomes. We find that the X chromosome conflict is driven by high gene substitution rates that impact the accuracy of phylogenetic inference. However, gene tree clustering showed strong conflict even after discounting variable third codon positions. Alternative topologies were not particularly enriched for sex chromosome loci, but spread across the genome. We conclude that binning genes to autosomal or sex chromosomes may result in a more accurate picture of the complex evolutionary history of a clade.
Collapse
Affiliation(s)
- Alexander Knyshov
- Department of Entomology, University of California, Riverside, CA, USA
| | - Eric R L Gordon
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, CT, USA
| | - Paul K Masonick
- Department of Entomology, University of California, Riverside, CA, USA
| | | | - Dimitri Forero
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Queenstown, Singapore
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | | | | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, China
| | | |
Collapse
|
9
|
Raban R, Gendron WAC, Akbari OS. A perspective on the expansion of the genetic technologies to support the control of neglected vector-borne diseases and conservation. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.999273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Genetic-based technologies are emerging as promising tools to support vector population control. Vectors of human malaria and dengue have been the main focus of these development efforts, but in recent years these technologies have become more flexible and adaptable and may therefore have more wide-ranging applications. Culex quinquefasciatus, for example, is the primary vector of avian malaria in Hawaii and other tropical islands. Avian malaria has led to the extinction of numerous native bird species and many native bird species continue to be threatened as climate change is expanding the range of this mosquito. Genetic-based technologies would be ideal to support avian malaria control as they would offer alternatives to interventions that are difficult to implement in natural areas, such as larval source reduction, and limit the need for chemical insecticides, which can harm beneficial species in these natural areas. This mosquito is also an important vector of human diseases, such as West Nile and Saint Louis encephalitis viruses, so genetic-based control efforts for this species could also have a direct impact on human health. This commentary will discuss the current state of development and future needs for genetic-based technologies in lesser studied, but important disease vectors, such as C. quinquefasciatus, and make comparisons to technologies available in more studied vectors. While most current genetic control focuses on human disease, we will address the impact that these technologies could have on both disease and conservation focused vector control efforts and what is needed to prepare these technologies for evaluation in the field. The versatility of genetic-based technologies may result in the development of many important tools to control a variety of vectors that impact human, animal, and ecosystem health.
Collapse
|
10
|
Connallon T, Beasley IJ, McDonough Y, Ruzicka F. How much does the unguarded X contribute to sex differences in life span? Evol Lett 2022; 6:319-329. [PMID: 35937469 PMCID: PMC9346086 DOI: 10.1002/evl3.292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/22/2022] [Accepted: 06/12/2022] [Indexed: 11/09/2022] Open
Abstract
Females and males often have markedly different mortality rates and life spans, but it is unclear why these forms of sexual dimorphism evolve. The unguarded X hypothesis contends that dimorphic life spans arise from sex differences in X or Z chromosome copy number (i.e., one copy in the "heterogametic" sex; two copies in the "homogametic" sex), which leads to a disproportionate expression of deleterious mutations by the heterogametic sex (e.g., mammalian males; avian females). Although data on adult sex ratios and sex-specific longevity are consistent with predictions of the unguarded X hypothesis, direct experimental evidence remains scant, and alternative explanations are difficult to rule out. Using a simple population genetic model, we show that the unguarded X effect on sex differential mortality is a function of several reasonably well-studied evolutionary parameters, including the proportion of the genome that is sex linked, the genomic deleterious mutation rate, the mean dominance of deleterious mutations, the relative rates of mutation and strengths of selection in each sex, and the average effect of mutations on survival and longevity relative to their effects on fitness. We review published estimates of these parameters, parameterize our model with them, and show that unguarded X effects are too small to explain observed sex differences in life span across species. For example, sex differences in mean life span are known to often exceed 20% (e.g., in mammals), whereas our parameterized models predict unguarded X effects of a few percent (e.g., 1-3% in Drosophila and mammals). Indeed, these predicted unguarded X effects fall below statistical thresholds of detectability in most experiments, potentially explaining why direct tests of the hypothesis have generated little support for it. Our results suggest that evolution of sexually dimorphic life spans is predominantly attributable to other mechanisms, potentially including "toxic Y" effects and sexual dimorphism for optimal investment in survival versus reproduction.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Isobel J. Beasley
- School of BioSciencesThe University of MelbourneParkvilleVIC3010Australia
- Melbourne Integrative GenomicsThe University of MelbourneParkvilleVIC3010Australia
- St. Vincent's Institute of Medical ResearchFitzroyVIC3065Australia
| | - Yasmine McDonough
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| | - Filip Ruzicka
- School of Biological SciencesMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
11
|
Anderson N, Jaron KS, Hodson CN, Couger MB, Ševčík J, Weinstein B, Pirro S, Ross L, Roy SW. Gene-rich X chromosomes implicate intragenomic conflict in the evolution of bizarre genetic systems. Proc Natl Acad Sci U S A 2022; 119:e2122580119. [PMID: 35653559 PMCID: PMC9191650 DOI: 10.1073/pnas.2122580119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Haplodiploidy and paternal genome elimination (HD/PGE) are common in invertebrates, having evolved at least two dozen times, all from male heterogamety (i.e., systems with X chromosomes). However, why X chromosomes are important for the evolution of HD/PGE remains debated. The Haploid Viability Hypothesis posits that X-linked genes promote the evolution of male haploidy by facilitating purging recessive deleterious mutations. The Intragenomic Conflict Hypothesis holds that conflict between genes drives genetic system turnover; under this model, X-linked genes could promote the evolution of male haploidy due to conflicts with autosomes over sex ratios and genetic transmission. We studied lineages where we can distinguish these hypotheses: species with germline PGE that retain an XX/X0 sex determination system (gPGE+X). Because evolving PGE in these cases involves changes in transmission without increases in male hemizygosity, a high degree of X linkage in these systems is predicted by the Intragenomic Conflict Hypothesis but not the Haploid Viability Hypothesis. To quantify the degree of X linkage, we sequenced and compared 7 gPGE+X species’ genomes with 11 related species with typical XX/XY or XX/X0 genetic systems, representing three transitions to gPGE. We find highly increased X linkage in both modern and ancestral genomes of gPGE+X species compared to non-gPGE relatives and recover a significant positive correlation between percent X linkage and the evolution of gPGE. These empirical results substantiate longstanding proposals for a role for intragenomic conflict in the evolution of genetic systems such as HD/PGE.
Collapse
Affiliation(s)
- Noelle Anderson
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343
| | - Kamil S. Jaron
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Christina N. Hodson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Matthew B. Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA 02115
| | - Jan Ševčík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Brooke Weinstein
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343
| | | | - Laura Ross
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Scott William Roy
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
12
|
Shirai Y, Piulachs MD, Belles X, Daimon T. DIPA-CRISPR is a simple and accessible method for insect gene editing. CELL REPORTS METHODS 2022; 2:100215. [PMID: 35637909 PMCID: PMC9142683 DOI: 10.1016/j.crmeth.2022.100215] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Current approaches for insect gene editing require microinjection of materials into early embryos. This severely limits the application of gene editing to a great number of insect species, especially to those whose reproduction systems preclude access to early embryos for injection. To overcome these limitations, we report a simple and accessible method for insect gene editing, termed "direct parental" CRISPR (DIPA-CRISPR). We show that injection of Cas9 ribonucleoproteins (RNPs) into the haemocoel of adult females efficiently introduces heritable mutations in developing oocytes. Importantly, commercially available standard Cas9 protein can be directly used for DIPA-CRISPR, which makes this approach highly practical and feasible. DIPA-CRISPR enables highly efficient gene editing in the cockroaches, on which conventional approaches cannot be applied, and in the model beetle Tribolium castaneum. Due to its simplicity and accessibility, DIPA-CRISPR will greatly extend the application of gene editing technology to a wide variety of insects.
Collapse
Affiliation(s)
- Yu Shirai
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | - Takaaki Daimon
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Carey SB, Lovell JT, Jenkins J, Leebens-Mack J, Schmutz J, Wilson MA, Harkess A. Representing sex chromosomes in genome assemblies. CELL GENOMICS 2022; 2. [PMID: 35720975 PMCID: PMC9205529 DOI: 10.1016/j.xgen.2022.100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sex chromosomes have evolved hundreds of independent times across eukaryotes. As genome sequencing, assembly, and scaffolding techniques rapidly improve, it is now feasible to build fully phased sex chromosome assemblies. Despite technological advances enabling phased assembly of whole chromosomes, there are currently no standards for representing sex chromosomes when publicly releasing a genome. Furthermore, most computational analysis tools are unable to efficiently investigate their unique biology relative to autosomes. We discuss a diversity of sex chromosome systems and consider the challenges of representing sex chromosome pairs in genome assemblies. By addressing these issues now as technologies for full phasing of chromosomal assemblies are maturing, we can collectively ensure that future genome analysis toolkits can be broadly applied to all eukaryotes with diverse types of sex chromosome systems. Here we provide best practice guidelines for presenting a genome assembly that contains sex chromosomes. These guidelines can also be applied to other non-recombining genomic regions, such as S-loci in plants and mating-type loci in fungi and algae.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.,US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa A Wilson
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
14
|
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T. Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proc Biol Sci 2022; 289:20212183. [PMID: 35042416 PMCID: PMC8767184 DOI: 10.1098/rspb.2021.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.
Collapse
Affiliation(s)
- José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Pablo M. González
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Ryan N. Su
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Sarah J. Bedford
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Carey S, Yu Q, Harkess A. The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing. Genes (Basel) 2021; 12:381. [PMID: 33800038 PMCID: PMC8000587 DOI: 10.3390/genes12030381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/21/2023] Open
Abstract
For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics to unravel the patterns that can be found across the hundreds of independent origins.
Collapse
Affiliation(s)
- Sarah Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Qingyi Yu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA;
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
16
|
Sylvester T, Hjelmen CE, Hanrahan SJ, Lenhart PA, Johnston JS, Blackmon H. Lineage-specific patterns of chromosome evolution are the rule not the exception in Polyneoptera insects. Proc Biol Sci 2020; 287:20201388. [PMID: 32993470 PMCID: PMC7542826 DOI: 10.1098/rspb.2020.1388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
The structure of a genome can be described at its simplest by the number of chromosomes and the sex chromosome system it contains. Despite over a century of study, the evolution of genome structure on this scale remains recalcitrant to broad generalizations that can be applied across clades. To address this issue, we have assembled a dataset of 823 karyotypes from the insect group Polyneoptera. This group contains orders with a range of variations in chromosome number, and offer the opportunity to explore the possible causes of these differences. We have analysed these data using both phylogenetic and taxonomic approaches. Our analysis allows us to assess the importance of rates of evolution, phylogenetic history, sex chromosome systems, parthenogenesis and genome size on variation in chromosome number within clades. We find that fusions play a key role in the origin of new sex chromosomes, and that orders exhibit striking differences in rates of fusions, fissions and polyploidy. Our results suggest that the difficulty in finding consistent rules that govern evolution at this scale may be due to the presence of many interacting forces that can lead to variation among groups.
Collapse
Affiliation(s)
- Terrence Sylvester
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Carl E. Hjelmen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Shawn J. Hanrahan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Paul A. Lenhart
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
17
|
Ezaz T. A Novel Paradigm for Sex Chromosome Turnover: Y and W Changes, X and Z Remain. Bioessays 2020; 42:e2000152. [PMID: 33448449 DOI: 10.1002/bies.202000152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 11/07/2022]
Abstract
On the Black Swans of conventional sex determination theory: There aren't many, but when an exception to the standard model of sex determination (evolutionary turnover of genes playing the role of "master sex determiner") arises, it certainly screams out for an explanation. In this issue, a novel one is put forward. It now awaits testing, particularly at the population level.
Collapse
Affiliation(s)
- Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT2617, Australia
| |
Collapse
|
18
|
Meisel RP. Evolution of Sex Determination and Sex Chromosomes: A Novel Alternative Paradigm. Bioessays 2020; 42:e1900212. [DOI: 10.1002/bies.201900212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Richard P. Meisel
- Department of Biology and Biochemistry University of Houston 3455 Cullen Blvd Houston TX 77204‐5001 USA
| |
Collapse
|