1
|
Tillet Y. Magnetic Resonance Imaging, a New Tool for Neuroendocrine Research in Sheep. Neuroendocrinology 2023; 113:208-215. [PMID: 35051936 DOI: 10.1159/000522087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
Magnetic resonance imaging (MRI) brain analysis is used in rodents and for clinical investigation in humans, and it becomes also possible now for large animal models studies. Specific facilities are available with clinical scanners and benefit to neuroendocrine investigations in sheep. Sheep has a large gyrencephalic brain and its organization is very similar to primates and human, and among physiological regulations, oestrous cycle of the ewes is similar to women. Therefore, this animal is a good model for preclinical researches using MRI, as illustrated with steroids impact on the brain. New data were obtained concerning the effect of sexual steroids on neuronal networks involved in the control of reproduction and in the influence of sexual steroids on cognition. In addition to the importance of such data for understanding the role of these hormones on brain functions, they give new insights to consider the sheep as a powerful model for preclinical studies in the field of neuroendocrinology. These points are discussed in this short review.
Collapse
Affiliation(s)
- Yves Tillet
- CNRS UMR 7247, IFCE, INRAE, University of Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
2
|
Banstola A, Reynolds JNJ. Mapping sheep to human brain: The need for a sheep brain atlas. Front Vet Sci 2022; 9:961413. [PMID: 35967997 PMCID: PMC9372442 DOI: 10.3389/fvets.2022.961413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
A brain atlas is essential for understanding the anatomical relationship between neuroanatomical structures. Standard stereotaxic coordinates and reference systems have been developed for humans, non-human primates and small laboratory animals to contribute to translational neuroscience research. Despite similar neuroanatomical and neurofunctional features between the sheep and human brain, little is known of the sheep brain stereotaxy, and a detailed sheep atlas is scarce. Here, we briefly discuss the value of using sheep in neurological research and the paucity of literature concerning the coordinates system during neurosurgical approaches. Recent advancements such as computerized tomography, positron emission tomography, magnetic resonance imaging, functional magnetic resonance imaging and diffusion tensor imaging are used for targeting and localizing the coordinates and brain areas in humans. Still, their application in sheep is rare due to the lack of a 3D stereotaxic sheep atlas by which to map sheep brain structures to its human counterparts. More recently, a T1- and T2-weighted high-resolution MRI 3D stereotaxic atlas of the sheep brain has been generated, however, the journey to create a sheep brain atlas by which to map directly to the human brain is still uncharted. Therefore, developing a detailed sheep brain atlas is valuable for the future to facilitate the use of sheep as a large animal experimental non-primate model for translational neurological research.
Collapse
Affiliation(s)
- Ashik Banstola
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- *Correspondence: Ashik Banstola
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Häni A, Diserens G, Oevermann A, Vermathen P, Precht C. Sampling Method Affects HR-MAS NMR Spectra of Healthy Caprine Brain Biopsies. Metabolites 2021; 11:metabo11010038. [PMID: 33419191 PMCID: PMC7825498 DOI: 10.3390/metabo11010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The metabolic profiling of tissue biopsies using high-resolution–magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy may be influenced by experimental factors such as the sampling method. Therefore, we compared the effects of two different sampling methods on the metabolome of brain tissue obtained from the brainstem and thalamus of healthy goats by 1H HR-MAS NMR spectroscopy—in vivo-harvested biopsy by a minimally invasive stereotactic approach compared with postmortem-harvested sample by dissection with a scalpel. Lactate and creatine were elevated, and choline-containing compounds were altered in the postmortem compared to the in vivo-harvested samples, demonstrating rapid changes most likely due to sample ischemia. In addition, in the brainstem samples acetate and inositols, and in the thalamus samples ƴ-aminobutyric acid, were relatively increased postmortem, demonstrating regional differences in tissue degradation. In conclusion, in vivo-harvested brain biopsies show different metabolic alterations compared to postmortem-harvested samples, reflecting less tissue degradation. Sampling method and brain region should be taken into account in the analysis of metabolic profiles. To be as close as possible to the actual situation in the living individual, it is desirable to use brain samples obtained by stereotactic biopsy whenever possible.
Collapse
Affiliation(s)
- Annakatrin Häni
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
| | - Gaëlle Diserens
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Anna Oevermann
- NeuroCenter, Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstr. 109a, 3012 Bern, Switzerland;
| | - Peter Vermathen
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Christina Precht
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
- Correspondence: ; Tel.: +41-31-631-2918
| |
Collapse
|
4
|
Santistevan L, Easley J, Ruple A, Monck S, Randall E, Wininger F, Packer RA. A pilot study of optical neuronavigation-guided brain biopsy in the horse using anatomic landmarks and fiducial arrays for patient registration. J Vet Intern Med 2020; 34:1642-1649. [PMID: 32469442 PMCID: PMC7379038 DOI: 10.1111/jvim.15813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/24/2023] Open
Abstract
Background Optical neuronavigation‐guided intracranial surgery has become increasingly common in veterinary medicine, but its use has not yet been described in horses. Objectives To determine the feasibility of optical neuronavigation‐guided intracranial biopsy procedures in the horse, compare the use of the standard fiducial array and anatomic landmarks for patient registration, and evaluate surgeon experience. Animals Six equine cadaver heads. Methods Computed tomography images of each specimen were acquired, with the fiducial array rigidly secured to the frontal bone. Six targets were selected in each specimen. Patient registration was performed separately for 3 targets using the fiducial array, and for 3 targets using anatomic landmarks. In lieu of biopsy, 1 mm diameter wire seeds were placed at each target. Postoperative images were coregistered with the planning scan to calculate Euclidian distance from the tip of the seed to the target. Results No statistical difference between registration techniques was identified. The impact of surgeon experience was examined for each technique using a Mann‐Whitney U test. The experienced surgeon was significantly closer to the intended target (median = 2.52 mm) than were the novice surgeons (median = 6.55 mm) using the fiducial array (P = .001). Although not statistically significant (P = .31), for the experienced surgeon the median distance to target was similar when registering with the fiducial array (2.47 mm) and anatomic landmarks (2.58 mm). Conclusions and Clinical Importance Registration using both fiducial arrays and anatomic landmarks for brain biopsy using optical neuronavigation in horses is feasible.
Collapse
Affiliation(s)
- Lawrence Santistevan
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jeremiah Easley
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Audrey Ruple
- Department of Public Health, College of Health and Human Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Sam Monck
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elissa Randall
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Fred Wininger
- Charlotte Animal Referral and Emergency, Charlotte, North Carolina, USA
| | - Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Pieri V, Trovatelli M, Cadioli M, Zani DD, Brizzola S, Ravasio G, Acocella F, Di Giancamillo M, Malfassi L, Dolera M, Riva M, Bello L, Falini A, Castellano A. In vivo Diffusion Tensor Magnetic Resonance Tractography of the Sheep Brain: An Atlas of the Ovine White Matter Fiber Bundles. Front Vet Sci 2019; 6:345. [PMID: 31681805 PMCID: PMC6805705 DOI: 10.3389/fvets.2019.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Diffusion Tensor Magnetic Resonance Imaging (DTI) allows to decode the mobility of water molecules in cerebral tissue, which is highly directional along myelinated fibers. By integrating the direction of highest water diffusion through the tissue, DTI Tractography enables a non-invasive dissection of brain fiber bundles. As such, this technique is a unique probe for in vivo characterization of white matter architecture. Unraveling the principal brain texture features of preclinical models that are advantageously exploited in experimental neuroscience is crucial to correctly evaluate investigational findings and to correlate them with real clinical scenarios. Although structurally similar to the human brain, the gyrencephalic ovine model has not yet been characterized by a systematic DTI study. Here we present the first in vivo sheep (ovis aries) tractography atlas, where the course of the main white matter fiber bundles of the ovine brain has been reconstructed. In the context of the EU's Horizon EDEN2020 project, in vivo brain MRI protocol for ovine animal models was optimized on a 1.5T scanner. High resolution conventional MRI scans and DTI sequences (b-value = 1,000 s/mm2, 15 directions) were acquired on ten anesthetized sheep o. aries, in order to define the diffusion features of normal adult ovine brain tissue. Topography of the ovine cortex was studied and DTI maps were derived, to perform DTI tractography reconstruction of the corticospinal tract, corpus callosum, fornix, visual pathway, and occipitofrontal fascicle, bilaterally for all the animals. Binary masks of the tracts were then coregistered and reported in the space of a standard stereotaxic ovine reference system, to demonstrate the consistency of the fiber bundles and the minimal inter-subject variability in a unique tractography atlas. Our results determine the feasibility of a protocol to perform in vivo DTI tractography of the sheep, providing a reliable reconstruction and 3D rendering of major ovine fiber tracts underlying different neurological functions. Estimation of fiber directions and interactions would lead to a more comprehensive understanding of the sheep's brain anatomy, potentially exploitable in preclinical experiments, thus representing a precious tool for veterinaries and researchers.
Collapse
Affiliation(s)
- Valentina Pieri
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Trovatelli
- Department of Health, Animal Science and Food Safety, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Davide Danilo Zani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefano Brizzola
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabio Acocella
- Department of Health, Animal Science and Food Safety, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | - Mauro Di Giancamillo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Malfassi
- Fondazione La Cittadina Studi e Ricerche Veterinarie, Romanengo, Italy
| | - Mario Dolera
- Fondazione La Cittadina Studi e Ricerche Veterinarie, Romanengo, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Ella A, Barrière DA, Adriaensen H, Palmer DN, Melzer TR, Mitchell NL, Keller M. The development of brain magnetic resonance approaches in large animal models for preclinical research. Anim Front 2019; 9:44-51. [PMID: 32002261 PMCID: PMC6951960 DOI: 10.1093/af/vfz024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Arsène Ella
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France.,MRC Cognition and Brain Science Unit, University of Cambridge, UK
| | - David A Barrière
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France.,Neurospin, CEA, France
| | - Hans Adriaensen
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, New Zealand
| | - Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand.,Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Matthieu Keller
- Physiologie de la Reproduction & des Comportements, INRA/CNRS/Université de Tours, France
| |
Collapse
|
7
|
Schmidt MJ, Knemeyer C, Heinsen H. Neuroanatomy of the equine brain as revealed by high-field (3Tesla) magnetic-resonance-imaging. PLoS One 2019; 14:e0213814. [PMID: 30933986 PMCID: PMC6443180 DOI: 10.1371/journal.pone.0213814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, the morphology of the horse brain (Equus caballus) is decribed in detail using high field MRI. The study includes sagittal, dorsal, and transverse T2-weighted images at 0.25 mm resolution at 3 Tesla and 3D models of the brain presenting the external morphology of the brain. Representative gallocyanin stained histological slides of the same brain are presented. The images represent a useful tool for MR image interpretation in horses and may serve as a starting point for further research aiming at in vivo analysis in this species.
Collapse
Affiliation(s)
- Martin J. Schmidt
- Small Animal Clinic–Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig-University, Giessen, Germany
- * E-mail:
| | - Carola Knemeyer
- Small Animal Clinic–Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig-University, Giessen, Germany
| | - Helmut Heinsen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Mental Health Center, University Hospital, Wuerzburg, Germany
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
8
|
Ella A, Delgadillo JA, Chemineau P, Keller M. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain. J Comp Neurol 2016; 525:676-692. [PMID: 27503489 DOI: 10.1002/cne.24079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022]
Abstract
The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arsène Ella
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| | - José A Delgadillo
- Centro de Investigacion en Reproducion Caprina, Universidad Autonoma Agraria Antonio Narro, Torreon, Mexico
| | - Philippe Chemineau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| | - Matthieu Keller
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| |
Collapse
|
9
|
Nitzsche B, Frey S, Collins LD, Seeger J, Lobsien D, Dreyer A, Kirsten H, Stoffel MH, Fonov VS, Boltze J. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Front Neuroanat 2015; 9:69. [PMID: 26089780 PMCID: PMC4455244 DOI: 10.3389/fnana.2015.00069] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/12/2015] [Indexed: 01/18/2023] Open
Abstract
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.
Collapse
Affiliation(s)
- Björn Nitzsche
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Stephen Frey
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Louis D Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Johannes Seeger
- Faculty of Veterinary Medicine, Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University Hospital of Leipzig Leipzig, Germany
| | - Antje Dreyer
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Holger Kirsten
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Faculty of Medicine, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig Leipzig, Germany ; LIFE Center (Leipzig Interdisciplinary Research Cluster of Genetic Factors, Phenotypes and Environment), University of Leipzig Leipzig, Germany
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern Bern, Switzerland
| | - Vladimir S Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada
| | - Johannes Boltze
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany ; Neurovascular Regulation Laboratory at Neuroscience Center, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|